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Part I

Introduction to the Physics of 
Particle Detectors
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Outline

• Interactions of Particles with Matter
• Gaseous Detectors (very brief!)
• Shower Counters

• Electromagnetic Counters
• Hadronic Counters

• Detectors based on Semi-Conductors
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Incoming Particle (pµ)

Outgoing Particle (p’µ)

Scattering Center:
Nucleus or Atomic Shell

Detection Process is based on Scattering
of particles while passing detector material

Energy loss of incoming particle: ∆E = p0 - p’0

Interactions of Particles with Matter
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Energy Loss of Charged Particles in Matter

∆E = 0: Rutherford Scattering

∆E ≠0: Leads to Bethe-Bloch Formula

Regard: Particles with m0 >> me

dE
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= 4πNAre
2mec 2z2 Z
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z - Charge of incoming particle
Z, A    - Nuclear charge and mass of absorber
re, me - Classical electron radius and electron mass
NA - Avogadro’s Number = 6.022x1023 Mol-1
I        - Ionisation Constant, characterizes Material

typical values 15 eV
δ         −  Fermi’s density correction

Tmax - maximal transferrable energy (later)
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Discussion of Bethe-Bloch Formula I
Describes Energy Loss by Excitation and Ionisation !!

We  do not consider lowest energy losses

‘Kinematic’ drop

~ 1/β2

Scattering Amplitudes:

Large angle scattering
becomes less probable
with increasing energy of
incoming particle.

Drop continues until βγ ~ 4

fi(θ) ∝1 (p − p')2,( p − p')2 ∝v 2
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Discussion of Bethe-Bloch Formula II
Minimal Ionizing Particles (MIPS)

dE/dx passes
broad Minimum @
βγ ≈ 4

Contributions from
Energy losses 
start to dominate
kinematic dependency
of cross sections

typical values in Minimum
[MeV/(g/cm2)]   [MeV/cm]

Lead         1.13                20.66 
Steel       1.51                11.65
O2 1.82  2.6·10-3 Role of Minimal Ionizing Particles ?
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Intermezzo: Minimal Ionizing Particles
Minimal Ionizing Particles deposit a well defined energy in an absorber
Typical Value: 2 MeV/(g/cm2)

Cosmic-Ray µ have roughly βγ ≈ 4  Ideal Source for Detector Calibration

Cosmic Muons detected in ILC Calorimeter Prototype

Signals show Landau-Distribution:
           ∆ΕAverage (à la Bethe-Bloch) ≠ ∆ΕReal

Typical for thin absorbers

Thick Absorbers:
∆ΕAverage = ∆ΕReal
Landau Distribution →Gauss-Distribution

Cosmic µ spectrum at
Sea Level

Rate ~ 1/(dm2sec.)
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Discussion of Bethe-Bloch Formula III
Logarithmic Rise

Radiative
Losses

Bethe Bloch
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Eµc

1

10

100 µ-

‘Visible’ Consequence
of Excitation and Ionization
Interactions.
Dominate over kinematic
drop

Interesting question:
Energy distribution of
electrons created by
Ionization.

δ-Electrons

In the relativistic case an incoming
particle can transfer
(nearly) its whole energy to an
electron of the Absorber
These δ-electrons themselves
can ionize the absorber !

Tmax = 4
m

MAbs.

• p1

2

2MAbs.

Tmax ≈ 2mc 2β 2γ 2

1+ 2
mγ
M

+ m
M
� 
� 
� 

� 
� 
� 

2

Non relativistic: E1 M Relativistic: |p1| M
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Discussion of Bethe-Bloch Formula IV
Radiative Losses - Not included in Bethe-Bloch Formula

Radiative
Losses

Bethe Bloch
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100 µ-

Particles interact
with Coulomb Field
of Nuclei of
Absorber Atoms

Energy loss due to
Bremsstrahlung Important for e.g. Muons with E > 100 GeV

Dominant energy loss process for
electrons (and positrons)
Detailed discussion later
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Interactions of Photons with Matter

From: http://www.nist.gov Eγ[MeV]

σPhot.

σCoh.

σincoh.

σPair Nuc.
σPair Elek.

Photonabsorption 
Cross Section in Pb 

ba
rn

s/
at

om
General: Beer’s Absorption Law: I= I0e-µx, µ = Absorptioncoefficientl

Three main processes

Photoeffect: σPhot. γ+Atom → Atom+ + e-

Eγ >> mec2  

I0 << Eγ << mec2

aB = Bohr radius, re = class. Electronradius

σ Phot. = 2πre
2α 4Z 5 mc 2

Eγ

σ Phot. = απaB
2 Z 5 I0

Eγ
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Compton Effect: σcoh., σincoh.
γ+e- →γ+e-

Klein-Nishina:

Eγ << mec2
.

Eγ >> mec2

σ c = 8π
3
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2 1−

2Eγ

mc 2
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Pair Production Process

From Kinematics:

Photon interacts
in Coulomb Field
of Nucleus
(or Shell Electron)

e+

e-

Eγ
Min. = 2mec

2

Threshold Energy 1.2 MeV

Absorption Coefficient

µ(E >> mec
2) = 28

9
nZ 2αre

2 ln
183
Z1 / 3 = 7

9
X0

−1

X0 = 1

4Z 2αnre
2 ln

183
Z1/ 3

Radiation length
Characterizes the
behavior of high
energetic γ and e in
Matter

Energy Spectrum of e+e-

Some Values:
X0,Air=30 420 cm
X0,Al = 8.9 cm
X0,Pb = 0.56 cm
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Bremsstrahlungs Process

dE
dx

= −4Z 2 Lρ
A

αre
2Ee ln

183
Z1/ 3 = − Ee

X0

Energy Loss for High Energetic electrons (and muons)

Molière Radius RM:

Transversal deflection of e- after passing X0 due to 
multiple scattering

εc = critical Energy
Energy where energy losses due to ionization excitation 
start to dominate

RM = 21MeV
εc

X0

Typical Values for Pb:
         εc[MeV] RM [cm]
Pb        7.2           1.6
NaJ     12.5          4.4  

X0, RM and εc
are most important
characteristics of
electromagnetic shower
counters
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Gaseous Detectors
Basic Principle: Charged particle ionizes gas

embedded in an electrical field

+ - + - + - + - + - + - + - + - + - + - +
- + - + - + - + - + - + - + - + - + - + -

Induced charge produces
voltage pulse at R ~ Particle EnergyR

V0

Chamber Gas

Particle Trajectory

Classical Application:
Track Finding of charged particles
R&D for employment as sensitive device
for Calorimeters (this lecture)
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Ionization 
Chamber

Operation Modes of Gaseous Detectors

Proportional
Counters

Ionization
Chamber

V[Volt]

# of Ions

Limited
Proportionality
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Calorimetry

Basic Principle: High energetic particle is stopped
in a dense absorber.
Kinetic energy is transferred into
detectable signal

Absorber with Z >> 1

- Only way to measure to measure electrically neutral particles
- Only way to measure particles at high energies (although … see later)

Need to distinguish: Electromagnetic Calorimeters
Hadronic Calorimeters

Creation and readout of detectable Signals ?
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Electromagnetic Calorimeters - Shower Development

Energy loss of electron by Bremsstrahlung:
Photons convert into e+e--Pairs

dE
dx

= − Ee

X0

 E = E0e
−x / X 0

t=x/X0

Simple Shower Model
(see Longo for detailed discussion) - Energy Loss after X0: E1 =Eo/2

- Photons -> materialize after X0
E =E1/ 2

Number of particles after t: N(t) = 2t

Each Particle has energy

Shower continues until particles
reach critical energy (see p. 16) where
tmax = ln(E0/εc)

Shower Maximum increases
logarithmically with Energy of
primary particle
(Important for detector design !!!)

N.B.: Some relevant numbers:

E = E0

N(t)
= E02−t  t = ln

E0

E

� 
� 
� 

� 
� 
� /ln2

X 0 = 180 A
Z 2 [g / cm 2 ]

εc = 550 MeV
Z

tMAX = ln
E 0

εc

� 

� 
� 

� 

� 
� − {0.5

1 for e induced showers
for γ induced showers

L(95%) = ln
E0

εc

+ 0.08Z + 9.6[X0]

R(95%) = 2RM
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(Electromagnetic) Calorimeter - Classical Readout 
Example: Sampling Calorimeters Homogenous Calorimeters → Homework

Alternating structure of Absorber and Scintillation medium
Light is generated by charged particles with E < εc

Only sample of shower passes active medium
Production of shower particles is statistical process
with N (t) ~ E  σ(E) ~ √E

Indeed e.g. BEMC (H1 detector):
σ(E)

E
= 10%

E
⊕ 1.7%

Plastic Scintillators
Two Component
organic Material (Benzole Type)

λ

In
te

ns
ity Absorption 

by Basic
Component

Emission 
by “primary”
Scintillator

Photomultiplier

Dynodes

Dynodes

Photocathode
(e.g. Bialkali)

Anode

Signal

Photoeffect at Cathode: ≈ 0.2e-/γ
Amplification by Dynodes
δ ≈ (10 outgoing e-/incoming e-)

Total Amplifcation:
G ~ δn, n = Number of Dynodes

γ

Spectral sensitvity of
Photocathodes
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Hadronic Showers
Hadronic Showers are dominated by strong interaction !

p + Nucleus → π + + π − + π 0 + ... + Nucleus*

1st Step: Intranuclear Cascade

2nd Step: Highly excited nuclei Fission followed
Evaporation               by Evaporation   

Distribution of Energy
Example 5 GeV primary energy

- Ionization Energy of
charged particles 1980 MeV

- Electromagnetic 
Shower (by π0->γγ) 760 MeV

- Neutron Energy           520 MeV
- g by Excitation of 

Nuclei                             310 MeV
- Not measurable

E.g. Binding Energy   1430 MeV
5000 MeV 

Distribution and local deposition of
energy varies strongly
Difficult to model hadronic showers
e.g. GEANT4 includes O(10)
different Models

Further Reading:
R. Wigman et al. NIM A252 (1986) 4
R. Wigman NIM A259 (1987) 389
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Comparison Electromagnetic Shower - Hadronic Shower
elm. Shower

Characterized by
Radiation Length:

hadronic Shower

Characterized by
Interaction Length: λint = A

σ pN A2 / 3Lρ
∝ A1 / 3

X0 ∝ A
Z 2

RM ∝ 21MeV
εc

• X0

λint

X0

= A1 / 3Z 2

A
∝ A4 / 3  SizeHadronic Showers >> Sizeelm. Showers
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Response to energy depositions

Important Relation: S(e)
S(h)

= e / mip

fem
e

mip
+ (1 − fem )

hi

mip

S(e), S(h)       = Signal created by electron,
hadron

e/mip (hi/mip) = Visible energy deposition
of electrons (hadrons)
normalized to energy
deposition by mip

fem = Electromagnetic Component
of hadronic shower

Goal for detector planning: e/mip = h/mip ⇔ S(e) = S(h)

e.g. Non linear response to hadrons since     
fem ~ ln(E/1 GeV)

with a considerable fluctuation of fem

hi

mip
= f ion

ion
mip

+ fn

n
mip

+ fγ
γ

mip
+ fB

b
mip

fion: hadronic component of hadronic
shower which is deposited by
by charged particles

fn: fraction deposited by neutrons
fγ: fraction of energy deposited by

nuclei γ
fB: fraction of binding energy of hadronic

component

Binding energy “lost” for
signal can be compensated
by detecting
neutrons

h/mip increases if e.g. 
n/mip and/or fn is
increased

Losses by Binding energy

N
eu

tro
n 

E
ne

rg
y 

w
it h

 E
n

< 
20

 M
eV Evaporation-n

Spallation-n
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Compensation Calorimetry

Goal:
e

mip
= h

mip

Software Weighting Hardware Weighting

Correct energy response ‘offline’

reduce e/mip
→Apply small weight to

signal component induced 
by electromagnetic
part of hadronic shower

e.g. increase number of
neutrons by
selecting absorber with
high Z falling Z/A

Higher neutron yield in nuclear
reactions

Need to detect n
Choose active medium with

high fraction of hydrogen
No Weighting
50 GeV

Weighting
50 GeV
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Detectors Based on Semi Conduction

Employed in: High Precision Gamma Spectroscopy
Measurement of charged particles with E < 1 MeV

Vertex finding, I.e. determining the interaction
of a high energy reaction
General: “Pixelization” detectors
Application in Calorimetry see later  

Takes relatively small energy deposition to create a signal

Comparison: O(100 eV) to create a γ-quant in a scintillator
3.6 eV to create a electron-hole pair in Silicium
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Principle of Particle Detection
Ionization of the detector
material - Bethe Bloch

Charge Collection in an
electrical field
(E-Field extends over depletion zone,
capacitance)

Electronic Amplification
and measurement of
the signal

Number of charges is
proportional to deposited 
energy

Segmentation of electrodes
allows for high spatial
resolution

à la Lutz Feld 

Universität Freiburg

n+ doted region

p+ doted region

p doted region
(depletion zone)

++
+
+

+
+

-
-

-
-
-

-

Typical values:
Dotation ND = 1012 cm-3, NA=1016 cm-3

Extension of depletion zone 300 µm
Specific resistance of depletion zone 10kΩm

Base Material e.g. Si
doted with e.g. As → n-doted (Donator)

B → p-doted (Acceptor)
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Spatial Resolution - µ Strip Detector

Simple Model: Signals only on neighbored strips
Readout current those of a capacitance    

q
q1 q2

d

0 x x2

Induced Charges: q1 = − d − x
d

• q q2 = − x
d

• q

q1 = − d − x
d

q(x)dx� q2 = − x
d

q(x)dx�
q1 + q2 = −qΣ = − q(x)dx�

x = 1
qΣ

xq(x)dx� = q2

q1 + q2

• d if q(x) = const.

if q=q(x) 

MIP creates roughly 80 e/hole pairs
Q = 24000 e- in 300µm Si

Application of electrostatical model
since Collection Time 20 ns 

Integration Time 120 ns
Losses by Capture 1ms      S

Spatial Resolution: typ. 15µm
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