Gas Detectors I

Ulrich Uwer Physikalisches Institut

- Introduction
- Gas detector basics
- MPWC
- Drift chambers (LHCb straw detector)
- Micro pattern detectors

Gas Detectors – A Frontier Technology

Advantages	 Cheap large area coverage Good spatial resolution Fast and large signals Good dE/dx resolution Good double track resolution Many possible detector configurations Low material budget – low radiation length
Challenges	 Extremely large area detectors needed (ATLAS 5500 m²) High mechanical precisions (ATLAS, better than 30 μm) Fast readout (25 ns bunch crossing cycle at LHC) High rate capability (LHCb Straw Tracker 400 kHz/cm²) High radiation dose (charge deposition ~2 C/cm) Light construction (LHCb Straw Tracker 9% X₀)

Example: ATLAS Muon Detector

ATLAS MDTs

Gaseous Detectors at LHC

ALICE: TPC (tracker), TRD (transition rad.), TOF (MRPC), HMPID (RICH-pad chamber), Muon tracking (pad chamber), Muon trigger (RPC)

ATLAS: TRD (straw tubes), MDT (muon drift tubes), Muon trigger (RPC, thin gap chambers)

CMS: Muon detector (drift tubes, CSC), RPC (muon trigger)

LHCb: Tracker (straw tubes), Muon detector (MWPC, GEM)

Gas ionization by charged particles

Drift of electrons in presence of fields

Motion of charged particles under influence of E and B fields: Langevin equation. **Drift velocity u:** $m\frac{d\vec{u}}{dt} = e(\vec{E} + \vec{u} \times \vec{B}) - K\vec{u}$ Mean free path L "stochastic friction force" due to collisions Time between collisions: m, e = mass and charge of electron $\tau = \frac{L}{c} = \frac{1}{N\sigma \cdot c}$ For t>> $\tau \rightarrow$ static situation: $\frac{d\bar{u}}{dt} = 0$ instantaneous velocity Cyclotron frequency Scalar mobility One finds: $\tau = \frac{K}{K}$ $\omega = -B$ $\mu = \frac{e}{m}\tau$ m m $\vec{u} = \frac{\mu E}{1 + \omega^2 \tau^2} \left[\hat{E} + \omega \tau \, \hat{E} \times \hat{B} + \omega^2 \tau^2 (\hat{E} \cdot \hat{B}) \hat{B} \right]$ for $\omega \tau \to 0$ $\vec{u} = \mu \vec{E}$

Drift velocity

Ulrich Uwer • Universität Heidelberg

Fast and slow gases

• Ramsauer minimum: v is large

• Ar:
$$\varepsilon_{\text{ionization}} >> \varepsilon_{\text{Ramsauer}}$$

$$ightarrow rac{\sqrt{\lambda}}{\sigma}$$
 small, i.e. slow gas

•
$$CH_{4:}$$
 $\varepsilon_{exitation} < \varepsilon_{Ramsauer}$

 $\rightarrow \frac{\sqrt{\lambda}}{\sigma}$ big, i.e. fast gas

- Ar / CH_4 mixture
 - Drift velocity u can be tuned

9 -

Drift velocity of ArCH₄

Drift velocity of ions

• Fractional energy loss for ions large:

$$\lambda \approx \frac{2m_{ion}M_{gas}}{\left(m_{ion} + M_{gas}\right)^2} \approx \frac{1}{2}$$

• Mobility / drift velocity much smaller than for electrons.

$$\mu_{ion} \approx 10^{-4} \mu_e \implies v_{ion} \approx 10^{-4} u_e$$

 While for electrons μ=μ(E, Gas, p, T) one finds for ions only little dependence on E:

> $\mu(E) \sim \text{const} \implies v \sim E$ for small E $\mu(E) \sim \sqrt{E} \implies v \sim \sqrt{E}$ for large E

Gas	lon	μ[cm²/(Vs)]
Ar	Ar+	1.5
Ne	Ne+	4.1
Xe	Xe+	0.6

Proportional Counter

Gas amplification

General case of non-uniform fields

$$G = \exp(\int_{a}^{r_{c}} \alpha(r) dr)$$

$$\alpha(r) = \text{Townsend coefficient}$$

$$G = k \exp(C'V)$$

Raether limit: $\alpha x \approx 20$ Phenomenological limit: $G \sim 10^8$ discharges (sparks)

For uniform field $n(r) = n_0 \exp(\alpha r)$ $G = \frac{n}{n_0} = \exp(\alpha r)$ G = gas amplification = $10^4...10^5$ (gain)

Pressure dependence

K = gas/configuration dependent constant = 5...8

Charge signal / rel. gain with mono chromatic γ source:

Fe55: 6.9 keV γs

Space Charge Effect

Gain drop at high particle densities: space charge around the anode.

2nd Townsend Coefficient & Quencher

UV photons from avalanche so far neglected:

UV photons \rightarrow photo effect (gas molecules / cathode)

Gas amplification G_{v} including effect of UV photons:

$$G_{\gamma} = G + G(\gamma G) + G(\gamma G)^{2} + \dots = \frac{G}{1 - \gamma G}$$

0× 1× 2× photo effect

 γ = probability for photo effect 2nd Townsend coefficient

For $\gamma G \rightarrow 1$: gas amplification becomes infinite continuous discharges (sparks)

Use poly-atomic gas admixtures to absorb photons: Quencher

Quencher

Excitation cross section for Noble gases (Ar) and poly-atomic gases (CH₄)

Energy dissipation through collisions (radiation less transitions)

Quencher: CH₄, C₂H₆, CO₂, CF₄

Operation modes

I) Recombination before collection

Ionization mode full charge collection, no charge multiplication.

III) Proportional mode detector signal proportional to primary ionization, gas amplifications 10⁴...10⁵, needs quencher

IV) Streamer mode

strong photon emission produced secondary avalanche, strong quencher to localize streamer, large signals

Geiger mode

massive photon emission, no quencher \rightarrow discharge over full length, needs to be stopped by HV drop

Absolute gain measurement

HERA-B Honeycomb Tracker:

Chamber current at a constant/stable irradiation for different HV (~10000 single channels contribute)

Signal development

- Avalanche starts at a few radii distance from wire (typ. 50µm)
- Electrons reach anode with ~1ns: Multiplication process takes less than 1ns
- lons will slowly drift towards cathode and induce a negative signal on anode

Induced signal of charge Q moved by dr in a system with total capacity $C=I\cdot C'$

$$dv = \frac{Q}{IC'V_0} \frac{dV}{dr} dr$$

$$= -\frac{Q}{2\pi\varepsilon_0 l} \ln \frac{a+d}{a}$$
 Assumes all charge produced at distance d
$$= -\frac{Q}{2\pi\varepsilon_0 l} \ln \frac{b}{a+d}$$
 Assumes all charge produced at distance d
$$v^+ = -\frac{Q}{2\pi\varepsilon_0 l} \ln \frac{b}{a+d}$$

$$= -\frac{Q}{2\pi\varepsilon_0 l} \ln \frac{b}{a+d}$$
 for LHCb straws for LHCb straws / ATLAS MDT
$$= -\frac{Q}{2\pi\varepsilon_0 l} \ln \frac{b}{a} = -\frac{Q}{lC'}$$

Signal timing

Signal readout

Signal Shaping

Long ion tail will shadow subsequent ionizing particles:

If threshold for particle detection is used, signal stays long time above threshold. Signal after shaping Signal after shaping Signal after amplifier Signal after amplifier

RC/CR Shaping

Ageing Effects

In a high rate environment (e.g. LHC) wire chambers could show several "ageing effects", nearly all of them triggered by pollutants in the gas/chamber:

Deposits on the anode wire:
 → gain loss

Study gain as function of totol charge deposition per length

24

Ageing Effects II

 Etching of anode wire in case of counting gas with CF₄ admixtures

(LHCb straws)

 Modification of the cathode surface: Malter effect → self sustaining currents

(HERA-B, Honeycomb tracker)

Tools for detector development

Garfield - simulation of gaseous detectors

http://consult.cern.ch/writeup/garfield/

Garfield is a computer program for the detailed simulation of twoand three-dimensional drift chambers

Magboltz - Transport of electrons in gas mixtures

http://consult.cern.ch/writeup/magboltz/

Magboltz solves the Boltzmann transport equations for electrons in gas mixtures under the influence of electric and magnetic fields.

Heed - Interactions of particles with gases

http://consult.cern.ch/writeup/heed/

HEED is a program that computes in detail the energy loss of fast charged particles in gases, taking delta electrons and optionally multiple scattering of the incoming particle into account. The program can also simulate the absorption of photons through photo-ionization in gaseous detectors.

Multi Wire Proportional Chamber

Ulrich Uwer • Universität Heidelberg

Drift Chamber

- Drift time \Rightarrow drift distance and intersection point of particle
- Spatial resolution of ~100 μm achievable

First Drift Chamber

Physikalisches Institut, Heidelberg, 1971

LHCb Outer Tracker

Outer Tracker - Demands

- 1. Measurement of momentum (δp/p = 0.4% @ 20GeV) → σ_x < 200µm
- 2. LHC bunch structure
 → fast charge collection

3. LHC environment

- → rate capability (~400kHz/cm²) ageing resistance up to 2C/cm (~10 years at LHCb)
- 4. Pattern recognition
 → Occupancy < 7%

Planar Tracking Stations

- 3 stations (6m x 5m)
 - 4 planes per station (X/U/V/X)2 layers of straw tubes per plane
 - → 55.000 straw tubes 137.5 km of straw tubes

→ modular design
 264 modules of 5 m x 0.34 m
 256 straws of 2.5 m

Straw Tubes

Module Construction

 $2 \times$

Drift time spectrum

Wire Chambers -Summary

- Technology widely used in HEP experiments
- Proven to be robust, precise and reliable devices
- Detector geometry and counting gas can be tuned and optimized to fulfill requirements of the given application
- Play an important role in all LHC detectors
- Will continue to used in future particle detector: ILC detector PANDA, CBM

Micro pattern detectors

- Micromegas
- GEM detectors

Micromegas

Large efficiency plateau > 40 V Time resolution : 9 ns Spatial resolution < 70 µm

39

Gas Electron Multiplier (GEM)

140 μm

40

Compass Triple-GEM

CASCADE Neutron Detector

Detector development tools

Simulation Tools:

MAXWELL Ansoft

electrical field maps in 2D & 3D, finite element calculation for arbitrary electrodes & dielectrics

HEED I.Smirnov

energy loss, ionization

MAGBOLTZ Steve Biagi

electron transport properties: drift, diffusion, multiplication attachment

Garfield R.Veenhof

fields, drift properties, signals (interfaced to programs above)

PSPICE Cadence D.S.

electronic signal processing

CT 11 SC 21 of T 10 SC 31 of T

