IRTG Fall School 2006, Heidelberg

Silicon Pixel Detectors

Peter Fischer

Universität Mannheim

Silicon Pixel Detectors — Today and Tomorrow

Why pixels?

Requirements and challenges

The ATLAS pixel detector

Modules, mechanics etc.

The sensor

The front end electronics

Some results / present status

The next generation (for TESLA)

Other applications of hybrid pixel detectors

Tracking in Particle Physics

Goals:

- Full event reconstruction, pattern recognition

- Momentum measurement

Identification of short lived particles
 (e.g. B-Mesons for b-physics, Higgs, SUSY)

Requirements for innermost layers:

- Small radius

few cm

- High resolution

 $\sigma_{ro} \sim 15 \ \mu m, \ \sigma_{z} \sim 1 \ mm$

- Short radiation length

 \sim 1% X₀ per layer

Accept high track density

several hits / crossing / cm² (jets!)

Why Pixels?

■ Avoid ambiguities (,ghost hits') at high multiplicities ⇒ need true 2D detector!

Survive high radiation level

⇒ need very low noise

Note: Strip detectors have better resolution & shorter radiation length!

Hybrid Pixel detectors

- Every pixel is connected to a separate amplifier on the readout chip
- Low input C ⇒ low noise ⇒ low threshold ⇒ can operate with thin detectors and small signals after irradiation ⇒ intrinsic radiation hardness

Requirements for pixel detectors in HEP

Pixel Size	50 x 400 μm ² (ATLAS)	(as small as possible, limit is power)
 Worst case signal Threshold Noise Threshold dispersion Leakage current tolerance 	1fC = 6000 electrons 2000 electrons 200 electrons 200 electrons 100nA / pixel	(mip in 300µm silicon in pixel corner) (quite a bit smaller than signal) (quite a bit smaller than the threshold) (comparable to the noise)
SpeedData storage	25ns timing precision up to 160 clock cycles	(bunch crossing of LHC, 'time walk') (level 1 latency)
 Radiation Tolerance 	50 Mrad, 10 ¹⁵ n/cm ²	(10 years operation)
PowerMaterial	50μW / pixel ~ 1% X ₀ per layer	(including periphery, $\sim 10 \text{W}$ / Module) an unrealistic goal at the end
Track efficiency	≥ 99 %	(including gaps between sensors)
Many channels	108	(must have zero suppression)

The Module

Flex capton solution:

- Connections between FE-Chips, module control chip, other components and cable through a thin capton PCB
- Larger pixels between chips
- Size = $16.4 \times 60.8 \text{ mm}^2$
- 16 chips with ~ 50000 pixels total
- ~ 2000 modules needed

1st generation: flex on support

2nd generation: flex module in mounting frame

Final Pixel Module

slide by M. Christianzini, Bonn

Overall Layout

- Global support is a flat panel structure
- Made from carbon composite material (IVW, Kaiserslautern)
- Total weight is 4.4kg
- 3 pieces, center part consists of two half-shells to open

Geometry Details

Cooling

Very important

- Contributes significantly to material budget
- Limits the power / performance of electronics
- Detectors must stay below −6°C to limit damage from irradiation (see later)
- ,binary ice' solution dropped
 - Cooling power is marginal
 - Fail safe operation for leaks in tubes not possible
 - Liquid is too much material
- ATLAS adopted evaporative cooling:
 - Cooling by evaporation of fluorinert liquid (C_4F_{10} or C_3F_8) @ -20°C. Needs pumping.
 - Low mass (gas!), small diameter tubes (only small pressure drops)
 - Very large cooling capacity
 - Aluminum tubes must withstand 6 atm if pumping stops and coolant develops its full vapor pressure.
- All components must cope with thermal cycling 25°C ⇔ -20°C

Barrels and staves

- Barrels are made from parallel staves
- One stave contains 13 modules which are shingled for overlap in z

Barrels and staves

- A Stave is a carbon structure with an Al tube for cooling
- Staves are tilted for overlap in phi (+change sharing)
- Production mainly in Germany, Italy, France

Disks and Sectors

- Disks are divided into sectors
- Coolant flows in tube between two C-C facings
- Modules are arranged on both sides for overlap

Sector with 3 ,modules'

cooling test of full disk (@ LBNL)

Silicon Pixel Detectors – Today and Tomorrow

Why pixels?

Requirements and challenges

The ATLAS pixel detector

Modules, mechanics etc.

The sensor

The front end electronics

Some results / status

The next generation (for TESLA)

Other applications of hybrid pixel detectors

Radiation damage of silicon Sensors

- Irradiation of silicon leads to bulk damage and oxide charges at the surface
- Bulk damage:
 - increased i_{leak} \rightarrow increased noise
 - ,reverse annealing' \rightarrow keep sensor cold (- 6°C)
 - Type inversion → n-side readout
 - Change in doping → increased depletion voltage (guard rings!) , partial depletion
- Oxide charges:
 - increased field strength → special designs

Problem of type inversion

ATLAS pixel sensor development

Performance of irradiated sensor

- Sensors are irradiated to full ATLAS fluence (10¹⁵ n_{eq}/cm²)
- They are then bump bonded to rad-soft ATLAS Prototype FE-Chips
- Measurements are performed in test beam with a Si-Strip telescope as reference detector
- Pixel Chips give some information about collected charge.
- V_{bias} > 600V possible!
- Homogenous charge collection also in pixel corners
- These sensors will survive 10 years of ATLAS operation!

Comparison of Sensor designs

Design with losses at pixel edge

final design with punch through dot

Production sensor

- 3 prototyping generations optimized
 - geometry
 - isolation technique (p-stop vs p-spray)
 - biasing
 - charge collection efficiency
 - radiation hardness
- Very good final design!

ATLAS prototype sensor wafer

2 sensors + test structures
(Teflon chuck for double sided probing)

Sensor details

- Design driven by radiation hardness requirement
 - n⁺ pixels in n-bulk (oxygenated Si) with moderate p-spray
 - 16.4 mm x 60.8 mm x 280 μ m , 46080 pixels (50x400 μ m²)

Silicon Pixel Detectors – Today and Tomorrow

Why pixels?

Requirements and challenges

The ATLAS pixel detector

Modules, mechanics etc.

The sensor

The front end electronics

Some results / status

The next generation (for TESLA)

Other applications of hybrid pixel detectors

Electronic Components of the Pixel System

- 16 front end chips (FE)
- 1 module controller chip (MCC)
- 2 VCSEL driver chips (VDC)
- 1 PIN diode receiver (DORIC)

Readout Drivers (ROD)

Readout Buffers (ROB)

Timing Control (TIM)

Slow Control, Supplies

The Front End Chip

■ Chip size: 7.4mm x 11mm

■ Pixels: 18 x 160 = 2880

■ Pixel size: 50µm x 400µm

■ Technologies: 0.8µm CMOS (FEA,FEB)

0.8µm BiCMOS (FED)

0.25µm CMOS (FEI)

- Operates at 40 MHz
- Zero suppression in every pixel
- Data is buffered until trigger arrives
- Serial control and readout, LVDS IO
- Analog part with
 - 40 μW power dissipation / Pixel
 - ~200 e noise
 - Amplitude measured via pulse width

Pixel Analog Part

feedback uses constant current

- high stability for fast shaping
- tolerates > 100 nA leakage
- linear decay

Analog information

- measure width of hit
- works nicely due to linear discharge

Individual adjustment of

- Threshold
- feedback current (FEI)
- ranges are adjustable

FED: Preamplifier Pulse Shapes

Different injected charges

Different feedback currents

(Measured on FED test chip with internal chopper, no sensor)

Data Readout

4 simultaneous tasks are running permanently:

- A time stamp (7bit Gray Code) is distributed to all pixels
- When a pixel is hit, the time of rising and trailing edges are stored in the pixel
- The hit is flagged to the periphery with a fast asynchronous scan
- Time information and pixel number are written into a buffer pool (common to a column pair)
- The hit in the pixel is cleared
- If a trigger arrives, the time of the hit (leading edge data) is compared to the time for hits associated to this trigger. Valid hits are flagged, older hits are deleted.
- The trigger is queued in a FIFO
- All valid hits of a trigger are sent out serially. All triggers in the FIFO are processed.

Layout of FED chip (bottom left)

Pixel area control Bus sense amps 24 EoC buffers 8 bit DAC **FIFO CMOS Pads LVDS Pads**

Radiation damage to the electronics

- Pixel chips are traversed by all particles -> irradiation is very high
- Problem: increasing positive oxid charge.
 - threshold shifts of the FETs
 - Generation of parasitic FETs. current flows ,arround' the gate and between FETs.
- Also: (rare) deposition of large charges in storage nodes
 - stored bits can flip (,single event upset`, SEU). ⇒ special designs for logic & RAMs

- Two possible Solutions:
 - use specialized rad-hard technology (DMILL, Honeywell only few vendors left...)
 - We have done a full FE chip (2 submissions) in DMILL.
 We have dropped this technology mainly because of the extremely poor yield.
 - use a deep-submicron technology (DSM, $L_{gate} \le 1/4 \mu m$) with special layout rules.

Radiation tolerant design approaches

- Use specialized rad-hard technology (DMILL, Honeywell only few vendors left...)
 - ATLAS has done a full FE chip (2 submissions) in DMILL. We have dropped this technology mainly because of the extremely poor yield.
- Use a deep-submicron technology (DSM, $L_{gate} \le \frac{1}{4}\mu m$) with special layout rules. Radiation hardness is achieved by:
 - The thin gate oxide (5nm). Holes generated by ionizing radiation can tunnel out of the gate oxide so that threshold shifts become very small
 - Leakage current 'around' the gate (bird's beak)
 under the (thick) field oxide is eliminated by
 annular NMOS devices. This would lead to much
 too large layouts in coarser technologies.
 - Current between devices is eliminated with p+ guard rings (substrate contacts)

Saks 84, RD49 (1MRad)

- These technologies are available to outside customers since few years only. This was not an option when chip development started...

Layout comparison: 0.8µm ⇔ annular 0.25µm

0.25µm: 63 devices, 16x50 µm2 < 1 day work DMILL: 59 devices, 90x50 µm2 > 1 week work

We got a x 6 gain the density (full custom digital) with much less layout effort

Example: 8 bit DAC 0.8µm ⇔ annular 0.25µm

ATLAS chip in 0.25µm technology

- We have converted our FED design to 0.25µm technology
- Benefit from high integration density and 5 metal layers.
- Examples:
 - Reduce cross coupling between digital ⇔ analog (also through sensor)
 - Add EoC buffers (now 64)
 - Threshold trim increased to 5 bit (!) on 25x25µm²
 - On-chip decoupling added, on-chip voltage regulators, ...
 - ToT trim added
 - Time walk correction: correct leading edge value if measured ToT is small

The MCC: Event building & Control

Tasks of module control chip MCC:

- Decode data/command signal (from DORIC)
 - ⇒ configuration data
 - \Rightarrow ,slow' commands
 - ⇒ ,fast' commands (trigger, SYNC, ...)
- Generate control signals for FE chips
- Receive serial data from 16 FE chips,
 accumulate data in FIFOs
- Check consistency of event (,score board')
- Build complete module event
- Send event to DAQ (via VDC)
- Error handling, fault conditions (disable defective FE chips, ...)

Silicon Pixel Detectors — Today and Tomorrow

Why pixels?

Requirements and challenges

The ATLAS pixel detector

Modules, mechanics etc.

The sensor

The front end electronics

Some results / status

The next generation (for TESLA)

Other applications of hybrid pixel detectors

Results of single chip & module prototypes

LVDS IO

Cable to power & DAQ

Single chip with sensor

HV (sensor bias)

Source measurement with ⁵⁵Fe

- 55Fe-source (6keV γ) deposits
 only 1700 eh-pairs
- FE-C chip with thresholds tuned to ~1200e⁻
- Some bump problems at edge (one of the first assemblies)
- The chip can be operated at very low threshold

Edge sensors are longer (600 µm) ⇒ higher count rate

Source measurement on a module with ²⁴¹Am

- Spot of ²⁴¹Am-source on two neighboring chips of a module
- Module without MCC: chips were illuminated one after the other

spatial resolution in testbeam

Consider short pixel dimension:

- $\sigma_{1hit} = 22\mu m$, $\sigma_{2hit} = 5\mu m$
- $\sigma_{\text{all}} = 13 \mu \text{m}$
- after irradiation: $14.5 \mu m = 50 \mu m / \sqrt{12}$
- Less 2 hit clusters after irradiation
- No improvement with analog info

Time Walk

- Detector is a capacitive load
 - ⇒ preamplifier has slow rise time (limited by power!)
 - ⇒ hits only slightly above threshold fire discriminator later
 - \Rightarrow hit is lost if delay > 25ns

This is one of our biggest problems.

Possible improvements: zero crossing, digital correction (FEI)

Track Efficiency

- Despite marginal time walk, efficiency is ok after irradiation!
- Here: Sensor is moderate p-spray with bias grid. Chip threshold is 3000 e

Depletion Depth after irradiation

Module Lab Measurement

slide by M. Christianzini, Bonn

Tests after Module Irradiation

Extensive radiation studies at CERN PS, irradiation of 7 production modules to ATLAS lifetime dose ($2x10^{15}$ p/cm² \approx 50MRad).

Test Beam Results (Irradiated Module)

- Test beam 2004 to characterize production modules
- Radiation hardness
 - Sensors almost fully depleted after 3 yrs high lumi with 600V bias
 - Charge collection efficiency reduced to 80% (trapping)
 - Lorentz angle decreases with increasing bias voltage (15°→5°)
- Detector performance after irradiation
 - In rφ direction 7μm (no irradiation)
 to 10 μm (after irradiation)
 - Efficiency: 99.9% → 98.2% after irradiation (@ 500V)
 - Pixel geometry slightly affects efficiency
 - High rate tests passed

Assembly of the Pixel Barrel

- Barrel composed of
 - barrel frame (carbon fiber laminate)
 - staves
 - 13 modules
 - Shingled carbon-carbon support
 - All identical (except cabling)

 For integration two staves are linked by a unique cooling tube (bi-stave)

slide by M. Christianzini, Bonn

Pixel End Cap

Sector assembly (1/8 of a disk): 6 modules are mounted on carbon-carbon plates, sandwiching the cooling pipe.

Assembled at LBL and shipped to CERN for integration

End cap status

- Both Pixel End Caps are not at CERN
 - Were fully assembled in LBL
 - dead channels at few per mil level
- Preparing for cosmic tests in November
 - test DAQ chain, services and software

Barrel integration: Mounting Staves into Half-Shells

Barrel integration: Putting together Halve-Shells

ATLAS Status

- After ~10years R&D the ATLAS pixel detector is nearly completed
- Test beam results and an extensive QC program makes us confident that the system will perform within specs

- A number of problems were tackled in a collaboration wide effort and solutions appear adequate
- Pixel will be integrated into ATLAS April 2007

slide by M. Christianzini, Bonn