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Tracking in Particle Physics

� Goals:

- Full event reconstruction, pattern recognition

- Momentum measurement

- Identification of short lived particles

(e.g. B-Mesons for b-physics, Higgs, SUSY)

� Requirements for innermost layers:

- Small radius few cm

- High resolution σrϕ ~ 15 µm, σz ~ 1 mm

- Short radiation length ~ 1% X0 per layer

- Accept high track density several hits / crossing / cm2 (jets!)
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Why Pixels ?

� Avoid ambiguities (‚ghost hits‘) at high multiplicities ⇒⇒⇒⇒ need true 2D detector !

� Survive high radiation level ⇒⇒⇒⇒ need very low noise

� Note: Strip detectors have better resolution & shorter radiation length!

???
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Bump pitch: 50µm
diameter: 20µm

(IZM, Berlin)

Hybrid Pixel detectors

� Every pixel is connected to a separate amplifier on the readout chip

� Low input C ⇒ low noise ⇒ low threshold ⇒ can operate with thin detectors and 

small signals after irradiation⇒ intrinsic radiation hardness
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Requirements for pixel detectors in HEP

� Pixel Size 50 x 400 µm2 (ATLAS) (as small as possible, limit is power)

� Worst case signal 1fC = 6000 electrons (mip in 300µm silicon in pixel corner)

� Threshold 2000 electrons (quite a bit smaller than signal)

� Noise 200 electrons (quite a bit smaller than the threshold)

� Threshold dispersion 200 electrons (comparable to the noise)

� Leakage current tolerance 100nA / pixel

� Speed 25ns timing precision (bunch crossing of LHC, 'time walk')

� Data storage up to 160 clock cycles (level 1 latency)

� Radiation Tolerance 50 Mrad, 1015 n/cm2 (10 years operation)

� Power 50µW / pixel (including periphery, ~ 10W / Module)

� Material ~ 1% X0 per layer an unrealistic goal at the end...

� Track efficiency ≥ 99 % (including gaps between sensors)

� Many channels 108 (must have zero suppression)
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The Module

Flex capton solution:

� Connections between FE-Chips,

module control chip, other components

and cable through a thin capton PCB

� Larger pixels between chips

� Size = 16.4 × 60.8 mm2

� 16 chips with ~ 50000 pixels total

� ~ 2000 modules needed

FE-Chip FE-Chip

sensor

MCC

2 layer capton PCB control chip 

Wire bonds 
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1st generation: flex on support

sensor

FE Chip FE Chip

ALL wire bonds
must be good!
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2nd generation: flex module in mounting frame

frame 

flex

MCC

FE chips
Stand over

viewed from chip side

viewed from flex side

FE chips

FE-Chip FE-Chip

sensor

MCC
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Final Pixel Module

slide by M. Christianzini, Bonn
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Overall Layout

~ 1m

� Global support is a flat panel structure

� Made from carbon composite material
(IVW, Kaiserslautern)

� Total weight is 4.4kg

� 3 pieces, center part consists of two 
half-shells to open

modules modules 

3 barrels

2 x 3 disks
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Geometry Details

slide by M. Christianzini, Bonn
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Cooling

� Very important

- Contributes significantly to material budget

- Limits the power / performance of electronics

- Detectors must stay below –6oC to limit damage from irradiation (see later)

� ‚binary ice‘ solution dropped

- Cooling power is marginal

- Fail safe operation for leaks in tubes not possible

- Liquid is too much material

� ATLAS adopted evaporative cooling:

- Cooling by evaporation of fluorinert liquid (C4F10 or C3F8) @ -20oC. Needs pumping.

- Low mass (gas!), small diameter tubes (only small pressure drops)

- Very large cooling capacity

- Aluminum tubes must withstand 6 atm if pumping stops and coolant develops its full 

vapor pressure.

� All components must cope with thermal cycling 25oC ⇔ -20oC
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Barrels and staves

� Barrels are made from parallel staves

� One stave contains 13 modules which are shingled for overlap in z
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Barrels and staves

� A Stave is a carbon structure with an Al tube for cooling

� Staves are tilted for overlap in phi (+change sharing)

� Production mainly in Germany, Italy, France

Al tube for
coolant

Carbon support

Shingled
(dummy) modules

Pictures are from a 
mechanical test stave



P. Fischer, Uni Mannheim    16IRTG Fall School 2006, Heidelberg: Silicon Pixel Detectors

Disks and Sectors

� Disks are divided into sectors

� Coolant flows in tube between two C-C facings

� Modules are arranged on both sides for overlap

� Production in USA

cooling test of full disk
(@ LBNL)Sector with 3

‚modules‘
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Radiation damage of silicon Sensors

� Irradiation of silicon leads to bulk damage and oxide charges at the surface

� Bulk damage:

- increased ileak → increased noise

- ‚reverse annealing‘ → keep sensor cold (- 60C)

- Type inversion → n-side readout

- Change in doping → increased depletion voltage (guard rings!) , partial depletion

� Oxide charges:

- increased field strength → special designs
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Problem of type inversion

p+ pixels on n- material n+ pixels on n- material

n- before
irradiation

p- after
irradiation

Need full
depletion!

Voltage drop on
Readout side

Can be operated
partially depleted☺�
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ATLAS pixel sensor development

� n+ pixels in n- sensor

� Multi guard ring structures hold up to 1000V

� Isolation of pixels with moderate dose p-spray

has highest field strength BEFORE irradiation

� Punch through dot and bias grid for testing 

before bumping

� Use of oxygenated silicon

Bias grid

Punch through dot

Bump contact

P-sprayP-spray
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Performance of irradiated sensor

� Sensors are irradiated to full
ATLAS fluence (1015 neq/cm

2)

� They are then bump bonded to
rad-soft ATLAS Prototype FE-Chips

� Measurements are performed in
test beam with a Si-Strip telescope
as reference detector

� Pixel Chips give some information
about collected charge.  

� Vbias > 600V possible!

� Homogenous charge collection
also in pixel corners

� These sensors will survive 10 years
of ATLAS operation! Threshold = 2000 e
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Comparison of Sensor designs

Design with losses at pixel edge final design with punch through dot
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Production sensor

� 3 prototyping generations optimized

- geometry

- isolation technique (p-stop vs p-spray)

- biasing

- charge collection efficiency

- radiation hardness

� Very good final design!

ATLAS prototype sensor wafer
2 sensors + test structures
(Teflon chuck for double sided probing)
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Sensor details

� Design driven by radiation hardness requirement

- n+ pixels in n-bulk (oxygenated Si) with moderate p-spray

- 16.4 mm x 60.8 mm x 280µm , 46080 pixels (50x400 µm2)

Special pixels in

inter-chip region

“long”,”ganged”

slide by M. Christianzini, Bonn
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Electronic Components of the Pixel System

1 Sensor

16 front end chips (FE)

1 module controller chip (MCC)

2 VCSEL driver chips (VDC)

1 PIN diode receiver (DORIC)

module control room

Optical receivers

Readout Drivers (ROD)

Readout Buffers (ROB)

Timing Control (TIM)

Slow Control, Supplies

11
FE chips

FE chips

2880
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11
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The Front End Chip

� Chip size: 7.4mm x 11mm

� Pixels: 18 x 160 = 2880

� Pixel size: 50µm x 400µm

� Technologies: 0.8µm CMOS (FEA,FEB)

0.8µm BiCMOS (FED)

0.25µm CMOS (FEI)

� Operates at 40 MHz

� Zero suppression in every pixel

� Data is buffered until trigger arrives

� Serial control and readout, LVDS IO

� Analog part with

- 40 µW power dissipation / Pixel

- ~200 e noise 

- Amplitude measured via pulse width
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Pixel Analog Part

feedback uses constant current
- high stability for fast shaping
- tolerates > 100 nA leakage
- linear decay 

Analog information
- measure width of hit
- works nicely due to
linear discharge  

Individual adjustment of
- Threshold
- feedback current (FEI)
- ranges are adjustable

Sensor
connects
here
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FED: Preamplifier Pulse Shapes

(Measured on FED test chip with internal chopper, no sensor)

Very linear discharge
⇒ good ToT

Very small
shaping loss

Different injected charges Different feedback currents

200 mV/div, 200ns/div 200 mV/div, 200ns/div

1 mip
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Data Readout

� If a trigger arrives, the time of the hit (leading 
edge data) is compared to the time for hits 
associated to this trigger. Valid hits are flagged, 
older hits are deleted. 

� The trigger is queued in a FIFO

� A time stamp (7bit Gray Code) is distributed to 
all pixels

� When a pixel is hit, the time of rising and 
trailing edges are stored in the pixel

� The hit is flagged to the periphery with a fast 
asynchronous scan

� Time information and pixel number are written 
into a buffer pool (common to a column pair)

� The hit in the pixel is cleared

� All valid hits of a trigger are sent out serially. All 
triggers in the FIFO are processed. 

4 simultaneous tasks are running permanently: 
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Layout of FED chip (bottom left)

FIFO

CMOS Pads

LVDS Pads

8 bit DAC

24 EoC buffers

Bus sense amps

control

Pixel area
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Radiation damage to the electronics

� Pixel chips are traversed by all particles -> irradiation is very high

� Problem: increasing positive oxid charge.

- threshold shifts of the FETs

- Generation of parasitic FETs. current flows ‚arround‘ the gate and between FETs.

� Also: (rare) deposition of large charges in storage nodes

- stored bits can flip (‚single event upset‘, SEU). ⇒ special designs for logic & RAMs

� Two possible Solutions:

- use specialized rad-hard technology (DMILL, Honeywell - only few vendors left...)

- We have done a full FE chip (2 submissions) in DMILL.

We have dropped this technology mainly because of the extremely poor yield.

 - use a deep-submicron technology (DSM, Lgate ≤ ¼µm) with special layout rules.
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Radiation tolerant design approaches

� Use specialized rad-hard technology (DMILL, Honeywell - only few vendors left...)

- ATLAS has done a full FE chip (2 submissions) in DMILL.

We have dropped this technology mainly because of the extremely poor yield.

� Use a deep-submicron technology (DSM, Lgate ≤ ¼µm) with special layout rules.

Radiation hardness is achieved by:

- The thin gate oxide (5nm). Holes generated by 

ionizing radiation can tunnel out of the gate oxide 

so that threshold shifts become very small

- Leakage current 'around' the gate (bird's beak) 

under the (thick) field oxide is eliminated by 

annular NMOS devices. This would lead to much 

too large layouts in coarser technologies.

- Current between devices is eliminated with 

p+ guard rings (substrate contacts)

- These technologies are available to outside customers since few years only.

This was not an option when chip development started...

Saks 84, RD49 (1MRad)
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Layout comparison:     0.8µm ⇔ annular 0.25µm

We got a x 6 gain the density (full custom digital) with much less layout effort

DMILL:
59 devices, 90x50 µm2

> 1 week work

0.25µm:
63 devices, 16x50 µm2

< 1 day work

Pixel of ATLAS FE chip
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Example: 8 bit DAC    0.8µm ⇔ annular 0.25µm

gain x 6 in mixed mode 
full custom layout

0.25µm
80x200 µm2

DMILL
500x200 µm2
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ATLAS chip in 0.25µm technology

� We have converted our FED design to 0.25µm technology

� Benefit from high integration density and 5 metal layers.

� Examples:

- Reduce cross coupling between digital ⇔ analog (also through sensor)

- Add EoC buffers (now 64)

- Threshold trim increased to 5 bit (!) on 25x25µm2

- On-chip decoupling added, on-chip voltage regulators, ...

- ToT trim added

- Time walk correction: correct leading edge value if measured ToT is small

5bit
I
f

decreasing I
f

I
f
 adjusts ToT
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The MCC: Event building & Control

Tasks of module control chip MCC:

� Decode data/command signal (from DORIC)

⇒ configuration data

⇒ ‚slow‘ commands

⇒ ‚fast‘ commands (trigger, SYNC, ...)

� Generate control signals for FE chips

� Receive serial data from 16 FE chips, 

accumulate data in FIFOs

� Check consistency of event (‚score board‘)

� Build complete module event

� Send event to DAQ (via VDC)

� Error handling, fault conditions (disable 

defective FE chips, ...)
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Results of single chip & module prototypes

Cable to
power & DAQ

LVDS IO

Single chip
with sensor

HV
(sensor bias)
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Source measurement with 55Fe

� 55Fe-source (6keV γ) deposits

only 1700 eh-pairs

� FE-C chip with thresholds tuned

to ~1200e-

� Some bump problems at edge
(one of the first assemblies)

� The chip can be operated at 
very low threshold
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Edge sensors are longer (600 µm)
⇒ higher count rate
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Source measurement on a module with 241Am

� Spot of 241Am-source on two neighboring chips of a module

� Module without MCC: chips were illuminated one after the other
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Higher count rate in
600 µm long edge pixels
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spatial resolution in testbeam

� Consider short pixel dimension:

� σ1hit = 22µm, σ2hit=5µm

� σall = 13µm

� after irradiation: 14.5µm = 50µm/√12
� Less 2 hit clusters after irradiation

� No improvement with analog info 

1 hit

analog

1 hit

digital

2 hit

digital

2 hit

analog

Single hits
bad resolution

double hits
good resolution

50µm

error
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Time Walk

� Detector is a capacitive load

⇒ preamplifier has slow rise time (limited by power!)

⇒ hits only slightly above threshold fire discriminator later

⇒ hit is lost if delay > 25ns

� This is one of our biggest problems.

Possible improvements: zero crossing, digital correction (FEI)

t
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Track Efficiency

� Despite marginal time walk, efficiency is ok after irradiation !

� Here: Sensor is moderate p-spray with bias grid. Chip threshold is 3000 e-

efficiency vs time
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Delay between particle
arrival and 40 MHz clock.

We can choose best timing!
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Depletion Depth after irradiation

not depleted

depleted

track entrance point 

from beam telescope

Track depth

depth (mm)
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non irradiated, full depletion

1x1015, 600 V, 190µm

1x1015 , 300 V, 105µm

Particle track

Depletion depth is 190 µm @ 600 V
after 1015 cm-2 (full ATLAS dose!)

No charge

seen here
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threshold: 4170e-

dispersion: 61e-
noise: 185e-

Module Lab Measurement

slide by M. Christianzini, Bonn
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Tests after Module Irradiation

Extensive radiation studies at CERN PS, irradiation of 7 production modules to ATLAS lifetime 
dose (2x1015 p/cm2 ≈ 50MRad). 
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slide by M. Christianzini, Bonn
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Test Beam Results (Irradiated Module)

� Detector performance after irradiation

- In rφ direction 7µm (no irradiation) 
to 10 µm (after irradiation)

- Efficiency: 99.9% → 98.2% after irradiation (@ 500V)

- Pixel geometry slightly affects efficiency

- High rate tests passed 

� Test beam 2004 to characterize production modules

� Radiation hardness

- Sensors almost fully depleted after 3 yrs high lumi with 600V bias

- Charge collection efficiency reduced to 80% (trapping)

- Lorentz angle decreases with increasing bias voltage (15o→5o)

In-time efficiency
slide by M. Christianzini, Bonn
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Assembly of the Pixel Barrel

� Barrel composed of 

- barrel frame (carbon fiber laminate)

- staves

♦ 13 modules

♦ Shingled carbon-carbon support

♦ All identical (except cabling)

L2 

Layer

L1 

Layer

B 

Layer

� For integration two staves are linked by a 
unique cooling tube (bi-stave)

slide by M. Christianzini, Bonn
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Pixel End Cap

Sector assembly (1/8 of a disk):
6 modules are mounted on 
carbon-carbon plates, 
sandwiching the cooling pipe.

Assembled at LBL
and shipped to CERN
for integration

slide by M. Christianzini, Bonn
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End cap status

Electrical test setup at CERN

� Both Pixel End Caps are not at CERN

- Were fully assembled in LBL

- dead channels at few per mil level

� Preparing for cosmic tests in November

- test DAQ chain, services and software

Planned cosmics stand

Transport box

slide by M. Christianzini, Bonn
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Barrel integration: Mounting Staves into Half-Shells

slide by M. Christianzini, Bonn
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Barrel integration: Putting together Halve-Shells

slide by M. Christianzini, Bonn
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Barrel integration

slide by M. Christianzini, Bonn
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ATLAS Status

� After ~10years R&D the 

ATLAS pixel detector is 

nearly completed

� Test beam results and an 

extensive QC program 

makes us confident that 

the system will perform 

within specs

� A number of problems were tackled in a collaboration wide effort and solutions 
appear adequate

� Pixel will be integrated into ATLAS April 2007

slide by M. Christianzini, Bonn


