

bmb+f - Förderschwerpunkt Hadronen und Kernphysik Großgeräte der physikalischen Grundlagenforschung

Time of Flight (ToF) Measurements

A.Schüttauf

GSI Darmstadt

05.10.2006

Outline

- ToF basic's
- Detector concepts
- Readout concepts
- Why RPCs for ToF ?
- Working principle
- How are timing RPCs operated
- Future ToF ideas
- Concluding remarks

Units I will use

Energy - *electron-volt*

- 1 electron-volt = kinetic energy of an electron when moving through potential difference of 1 Volt;
 - $1 \text{ eV} = 1.6 \times 10^{-19} \text{ Joules} = 2.1 \times 10^{-6} \text{ W} \cdot \text{s}$
 - 1 kW•hr = 3.6 × 10⁶ Joules = 2.25 × 10²⁵ eV

Mass - *eV/c*²

- $1 \text{ eV/c}^2 = 1.78 \times 10^{-36} \text{ kg}$
- electron mass = 0.000511 GeV/c²
- proton mass = 0.938 GeV/c²
- my mass (85 kg) $\approx 4.8 \times 10^{37} \, \text{eV/c}^2$

Momentum - *eV/c*.

- $1 \text{ eV/c} = 5.3 \times 10^{-28} \text{ kg m/s}$
- momentum of a soccer ball at 128 km/h \approx 5.29 kgm/s \approx 9.9 \times 10²⁷ eV/c

Particles through matter

When passing through matter,

- particles interact with the electrons and/or nuclei of the medium;
- this interaction can be *weak*, *electromagnetic* or *strong interaction*, depending on the kind of particle; its effects can be used to detect the particles;
- Possible interactions and effects in passage of particles through matter:
 - excitation of atoms or molecules (e.m. int.):
 - charged particles can excite an atom or molecule (i.e. lift electron to higher energy state);
 - subsequent de-excitation leads to emission of photons;
 - **ionization** (e.m. int.)
 - electrons liberated from atom or molecule, can be collected, and charge is detected
 - Cherenkov radiation (e.m. int.):
 - if particle's speed is higher than speed of light in the medium, e.m. radiation is emitted -- "Cherenkov light" or Cherenkov radiation, which can be detected;
 - amount of light and angle of emission depend on particle velocity;

- transition radiation (e.m. int.):
 - when a charged particle crosses the boundary between two media with different speeds of light (different "refractive index"), e.m. radiation is emitted -- "transition radiation"
 - amount of radiation grows with (energy/mass);
- **bremsstrahlung** (= braking radiation) (e.m. int.):
 - when charged particle's velocity changes, e.m. radiation is emitted;
 - due to interaction with nuclei, particles deflected and slowed down emit bremsstrahlung;
 - effect stronger, the bigger (energy/mass) ⇒ electrons with high energy most strongly affected;
- **pair production** (e.m. int.):
 - by interaction with e.m. field of nucleus, photons can convert into electron-positron pairs
- electromagnetic shower (e.m. int.):
 - high energy electrons and photons can cause "electromagnetic shower" by successive bremsstrahlung and pair production
- hadron production (strong int.):
 - strongly interacting particles can produce new particles by strong interaction, which in turn can produce particles,... "hadronic shower"

ToF can improve the particle id of a detector setup. Especially: ToF bridges, rather cheap the gap in between the dE/dx measurement

Why do we need ToF

Detector resolution needed

Typical setups for ToF detectors

Fix target accelerators

SIS (FOPI,HADES) AGS (E895) SPS (NA49)

Advantage: Long flight pass (5-10m)

Disadvantage: High granularity

Colliders

LEP (ALEPH) RHIC (STAR) LHC (ALICE)

Advantage: Lower rate CM system

Disadvantage: Shorter flight pass (2-3m)

Typical setups for ToF detectors

Particle id @ LEP e⁻+e⁺

Particle id with ALEPH TPC R.Settles MPI-Munich W.Blum MPI-Munich G.Rolandi CERN

Good dE/dx resolution requires

long track length large number of samples/track good calibration, no noise, ... **ALEPH TPC resolution** up to 334 wire samples/track truncated (60%) mean of samples

5% (330 samples)

ToF kinematic's

How to calculate the ToF difference between 2 particles of mass $m_1 \& m_2$

05.10.2006

ToF basic numbers

There is an optimal range for ToF measurement !

Nowadays we can limit this range for the π ,K,p separation below P < 2-4 GeV/c depending on the detector resolution and flight path.

Signal properties

ToF Detectors I

photomultipliers (pmt) + scintillators (standard solution)

Scintillators in use for ToF

Organic

- Liquid
 - Economical
 - Hard to handle
- Solid
 - Fast decay time
 - Long attenuation length
 - Emission spectra

Inorganic

- NaI, CsI
 - Excellent γ resolution
 - Slow decay time
- BGO
 - High density, compact

Typical plastic scintillators use anthracene plus wavelength shifter and can reach σ_t < 60 ps.

Resistive Plate Chamber history

Trigger RPC developed in 1981 by R.Santonico and R. Cardarelli Development of Resistive Plate Counters

Nucl. Inst. and Methods 187 (1981) 377-380

Multi Gap RPCs started by E.C. Zeballos et al A new type of Resistive Pate Chambers : The Multigap RPC Nucl. Inst. and Methods A 374 (1996) 132

 $\sigma_t \sim 3-4 \text{ ns}$

 $\sigma_t \sim 5 \text{ ns}$

Timing RPC started

By P.Fonte A.Smirnitski, M.C.S. Williams

A new high-resolution TOF technology Nucl. Inst. and Methods A 443 (2000) 201-204

Why RPCs for ToF

Common ToF-systems used plastic scintillators and PMPs with σ_t <60 ps.

Advantage: Z² ~ dE/dx Simple detector system . Reliable system.

Disadvantage: Price Granularity

05.10.2006

For large scale or high granularity experiments price is an issue.

Examples : FOPI TOF: Size ~5 m² Channels ~5000 $\sigma_t < 100 \text{ ps}$ $\sigma_{\phi} < 0.5 \text{ cm}$

 $\begin{array}{l} \textbf{ALICE TOF:}\\ \text{Size} ~160 \text{ m}^2\\ \text{Channels} ~160 \text{ 000}\\ \sigma_t {<}100 \text{ ps} \end{array}$

HADES: Size ~ 3 m² Channels ~1000 σ_t <100 ps δf <600 Hz/cm² Solutions : Gaseous detector systems like:

 $\begin{array}{ll} \text{PPAC} & \sigma_t{<}250 \text{ ps} \\ \text{Pestov} & \sigma_t{<}50 \text{ ps} \end{array}$

RPC (T) σ_t <2 ns MRPC (t) σ_t <100 ps

Single stack configuration

Double stack configuration (often used)

How to build a timing RPC ?

Avalanches in high E-fields

The avalanche

Eo

T-RPC α~10/mm MRPC α~100/mm

T-RPC $C_2F_4H_2$ /isobutene/SF₆ 97/2.5/0.5 MRPC $C_2F_4H_2$ /isobutene/SF₆ 85/5/10 05.10.2006

IRTG Lectures Heidelberg

W.Legler Die Statistik der Elektronenlawine In elektronegativen Gasen bei hohen Feldstärken Und grosser Gasverstärkung, Z. Naturforschg.16a (1961) 253-261

2

\$

05.10.2006

The Hardware

05.10.2006

\$

25

35

30

20

15

(GeV/c) PLab 400MeV/c 10 10 0 5 Velocity [cm/ns] Velocity (cm/ns) Central Au-Au collision at 1.45 AGeV has ~60particles in the acceptance of the proposed MMRPC barrel This needs a granularity of 700 cells (2500 strips)

ALICE-TOF has 10 gas gaps, each of 250 micron width

Timing depends on individual gap Efficiency depends on total gas gap (10x250 µm)

M.C.S.Williams INFN Bologna

05.10.2006

MMRPCs parts

FOPIs MMRPC parameters:	
90 x 4.6 cm ²	active area
1.1 & 0.5 mm	10 glass plates
8 x 220 μm	gaps (fishing rope)
16	strips
1.94/0.6 mm	strip/gap
~10 kV	applied voltage
Gas:	
C ₂ F ₄ H ₂ /isobutene/SF6 85/5/10	

Compact module

Interface between MMRPC & Electronics SAMTEC 50 Ω multi-coaxial cable 0.8 mm pitch. In total 80 connections (16 used).

5 MMRPCs in a Super Module (SM) 30 SMs within FOPI K.D.Hildenbrand M.Kis X.Zhang Y.J.Kim

05.10.2006

The Electronics

05.10.2006

FEE-simulations

FOPIs Front-End-Electronic-Card

GSI+HD+I3HP M.Ciobanu

FOPIs digitizer (TACQUILA)

Free running common stop system at 40 MHz. Individual TAC resets 0.2-2.0 μs.

FEE + TAC/QDC-Digitizer 16 ch. G ~ 50-250 TAC ~10 ps/ch

- $\delta f \sim 1.5 \text{ GHz}$ Zero-suppression
- $P_F \sim 0.56$ W/ch $P_T \sim 0.5$ W/ch

05.10.2006

Full readout system

Free running common stop system at 40 MHz. Individual TAC resets 0.2-2.0 μs.

	Electronic resolution		
	FEE ~ 18 ps TAC ~ 10 ps δt ~ 15 ps		
	TAC + FEE + Card <u>+ Clock</u> Σ➔ δt	< 2 ps < 3 ps → 10 ps → 10 ps ~ 15 ps	
l system electronic resolution σ _F < 25 ps			

05.10.2006

ALICE-FEE (NINO)

➢ Using 0.25 µm CMOS IBM technology
➢ Full differential 8 ch design with ToT
➢ Low power 40 mW/ch

→ Resolution below σ_t <20 ps

P.Jarron F.Krummenacher M.C.S. Williams

05.10.2006

ALICE-digitizer (TDC)

F.Anghiolfi

HPTDC is fed by a **40 MHz clock** giving us a <u>basic 25 ns period (coarse count).</u>

A PLL (Phase Locked Loop) device inside the chip does clock multiplication by a factor 8 (3 bits) to 320 MHz (3.125 ns period) .

A **DLL (Delay Locked Loop)** done by 32 cells fed by the PLL clock acts a 5 bits hit register for each PLL clock (98 ps width LSB = 3.125 ns/32).

4 **R-C delay lines** divides each DLL bin in 4 parts (R-C interpolation)

ALICE electronics summary

IRTG Lectures Heidelberg

30 35

40

HPTDC resolution (ps)

45 50

10 15 20 25

Detector performance

05.10.2006

Darkrate of MMRPCs

Darkrate vs E-field

MRPCs E-field range

E-field = App. Voltage / Gap size Exp: 4x0.22 mm = 0.088 cm 8.8 kV → 100 kV/cm

Trigger option: Normal < 0.2 Hz/cm² → 80 Hz/counter Typically FEE5+TAQ → 40 Hz/counter

Needs \rightarrow Multiplicity or Mor for 1 SM

Slewing correction

Integral non-linearity's

Walk, wiggle and tail

After combined corrections for MMRPC B at 108 kV/cm (9.5 kV).

Final resolution plot below 90 ps with a tail < 1%. Rest tail is from non-perfect wiggle and walk corrections **not** from the detector itself. When the counter is in **avalanche** mode.

Electronic gain in relation to threshold and **detector gain** for optimizing the **timing**.

05.10.2006

Comparison of timing and efficiency for **220,250** and **270 µm** gaps (8).

Results:

Fully efficient > 107 kV/cm (98 %)Best timina > 112 kV/cm (75 ps)

Timing and efficiency depend in the avalanche regime only on the E-field. Both are directly correlated to the field.

What is a cluster ?

Cluster size universality

FEE-gain dependence on timing & efficiency

MRPC 19b 90cm-8Gaps-16Strips

The timing and efficiency dependence from the E-field shift towards lower fields for higher electronic gain.

We reach at lower E-fields the same or better timing performance.

Optimal range: 150 -170

Why not 200 ???

\$

- 1. Gap size set to $8x220 \ \mu m$ for good timing and small cluster size
- 2. Electronic gain set to 160 at a discriminator threshold of 75 mV
- 3. Glass plates in a staggered configuration 0.5 mm and 1mm
- 4. Optimal timing at full efficiency around 105 kV/cm

05.10.2006

MMRPC (B) vs start (plastic)

MMRPC (C) vs start (plastic)

Stable scan with a stable start. The start is very important. saturation above 105 kV/cm

At higher rates ~ **1kHz** we see a decrease of the timing 10-15 ps.

Timing & efficiency RPC 13a-90cm-6gaps-14strips 30 U+Au 900 AMe U+Au 900 AMe σ_t< 75 ps Matched CDC-MRPC hits ε > 95 % 10 U+Au 900 AMeV Yield Yield 1.6 RPC 13a 90cm-6Gaps-14Strips 175 100 ← 95 % Full-RPC 150 Eff. v σ_t-σ_{ts} 80 0.8 0.7 Mini+RPC 0.6 125 Eff. σ_t-σ_{ts} 0.4 Time Diff. (ns) Time Diff. (ns) Efficiency (%) ⁶⁰ 100 ps → $\sigma_t^{(ps)}$ 0.2 100 Velocity (cm/ns) 40 $\sigma_t < 75 \text{ ps}$ Tail < 3 % 50 P-v plot for fast pions 20 Fast pions Small momentum 25 dependence. **Single Hit Case** 0 L 50 150 60 70 80 90 100 120 130 140 IRTG Lectures Heidelberg 05.10.2006

Timing & efficiency

Background

Existing setups

05.10.2006

Harp layout (CERN)

10 mm

- Length: 2 m • Width: 150 mm
- Thickness:

2000 -1500 -1000 -500 500 Overlap time difference, ps ╶╴╸╵╵[┿]╵╵╵╴╸╛┇┲╤╤╌╸╸╸╸╸╸╴╸╴╴╸╴╴╸╸╸╸╸╸╸ RPC efficiency 00 • positive tracks 07

 $\sigma/\sqrt{2} = 145 \ ps$

05.10.2006

IRTG Lectures Heidelberg

All overlaps, all pad rings χ^2/ndf

Ρĺ

P2

P3

P4 P5

\$800

ber

Num

4000

172.2 / 51

7058.±

 $0.9476 \pm$

 $204.6 \pm$

910.0 +

 $524.2 \pm$

1000

1500

41.48 0.7607

36.79

8.121

Harp Results

+8.9 GeV/c 0.05 λ Be target – pad ring 5 (average σ_t)

Particle id @ RHIC d+Au

ALICE MRPC performance

IRTG Lectures Heidelberg

14

HADES RPC performance

Summary, Conclusion & Outlook

05.10.2006

Conclusions on double hits

 $\begin{array}{l} \text{MMRPC resolution} \\ \textbf{Double hits} \\ \sigma_t < 100 \text{ ps} \\ \epsilon &> 85 \% \end{array}$

05.10.2006

Conclusions on cluster size

Mean RMS χ^2/ndf Constant Mean Single 0.1315 2004/08/03 11.01 FOPI-RPC-Test-Nov/Dez03 69.65 / 28 E.Cordier 125.8 -0.1117E-01 Sigma 0 9247E_0 10 20 25 15 20 25 15 30 30 momentum velocity correlation momentum velocity correlation -1.5 0.5 -0.5 1.5 Time difference(ns) 10 10 Entries 120 0.5963E-01 RMS 0.2801 Double χ²/ndf Constant 16.79 / 18 6.978 0.1914E-01 0.1038 ^{Mean} Sigma 10 10 0.25 0.75 0.5 0.25 0.5 0.75 RPC mass all cuts **RPC** mass -0.75 -1 -0.5 -0.25 0.25

05.10.2006

IRTG Lectures Heidelberg

Time difference(ns)

Conclusion on start timing

- Interaction rate 10⁷Hz (10% central collisions)
 ~1000 tracks /event
- TOF wall at 10m from target from 3° to 27° (same coverage STS):
 - Rate from 1kHz/cm² (27°) to 20kHz/cm² (3°)
 - Hit density from 6.10⁻²/dm² to 1/dm², more than 60000 cells to have occupancy below 5%
 - Total area >100m²: cannot use traditional scintillator with photomultiplier

Granularity for CBM

Concepts: Different detectors types in low and the high rate environment.

Low rate <2 kHz Pad anode Multi strip anode Single strip anode High rate > 2 kHz Pad anode Single cells

Problem: Different counters may need different electronics.

Papers on timing RPCs

Doctoral Thesis, C. Lippmann, May 2003 (CERN, University of Frankfurt) NIMA 500 (2003) 144-162, W. Riegler, C. Lippmann, R. Veenhof NIMA 491 (2002) 258-271, W. Riegler NIMA 481 (2002) 130-143, W. Riegler, D. Burgarth Proceedings of IEEE NSS/MIC (2002), C. Lippmann, W. Riegler NIMA 489 (2002) 439-443, CERN-OPEN-2001-074, T. Heubrandtner, B. Schnizer, C. Lippmann, W. Riegler

G. Carboni et al. NIM A 498(2003)135 [2 mm RPC] G. Aielli et al. NIM A 508(2001)6, RPC 2001 [2 mm RPC] P. Colrain et al. NIM A 456(2000)62 A. Mangiarotti et al. NIM A 533(2004)16 RPC 2003

D.Gozalez Diaz et al. Nucl. Phy. B (Proc.Suppl.) 158 (2006) 111-117 V.Ammosov et al. Nucl. Phy. B (Proc.Suppl.) 158 (2006) 56-59 A.Schüttauf et al. Nucl. Phy. B (Proc.Suppl.) 158 (2006) 52-53 A.Schüttauf et al. NIM A 553 (2004) 65-68 H. Alvarez-Pol et al. NIM A 535 (2004)277 M.C.S. Williams et al. NIM A 478 (2002) 183-186 M.Petrovici et al. NIM A 508 (2000) 75-78

05.10.2006