

Silicon Strip Detector + Beetle Readout Chip

T. Alt, G. Øvrebekk, F. Rühr, K. Aamoth

Introduction Setup Measurements Conclusions

Overview
Silicon strip detector
Beetle chip

Overview

- Introduction
- Setup
- Measurements
- Conclusion

Introduction Setup Measurements Conclusions

Silicon strip detector

• The task was to explore the properties of a silicon strip detector consisting of a silicon strip and an analogue front-end chip and use it for simple signal measurements

The beetle chip

- The beetle is the front-end chip for our silicon strips
- It integrates 128 channels
- The input signals are amplified and shaped
- All 128 were multiplexed into one analogue output signal in our case(other modes exist)
- The chip provides an internal test pulse

Introduction Setup Measurements Conclusions - Detector and readout chip Measurement instruments - Control - Analysis

Detector and readout chip

- The assembly of silicon strips, testboard and readout chip were in an enclosed box to prevent damage to the silicon due to extreme currents caused by light
- A testboard was used to mount the strips and chip, and to supply control and voltage lines
 - One chip supply voltage regulator always was extremely hot, above 60 degrees

Introduction
Setup
Measurements
ConclusionsDetector and readout chip
Measurement instruments
Control
Analysis

Measurement instruments

 All data was taken using a LeCroy digital scope

•

The output of the beetle chip basically is one analogue amplitude from one single point of time for 128 channels sent sequentially (plus a digital header in front)

- The scope was read out via Ethernet using a PC and LabView; Data taking was done manually
- The data was saved in text files using a simple "pointin-time amplitude" format for analysis and plotting
- Clear separation of the channels, and thus determination of the output amplitude of a given channel was a critical task with our data taking method, and not always 100% stable
 - The time<-> channel relation in the data files is established by a trigger of the scope and the position of this trigger in the scope memory

Control

- The beetle chip was controlled via an I2C interface from a control board in the VME crate
- External triggers were generated by a VME board
- Both these boards were addressed by the crate controller CPU over VME

Analysis

- Quick analysis was done using MS Excel for simple tasks and plots
- Root was used for more demanding tasks

Introduction
SetupBeetle testpulse and shaperNoise and pedestalsNoise and pedestalsMeasurements
ConclusionsDepletion Depth/external bias VoltageCosmics(?) and sourceCosmics(?)

Beetle testpulse

- Test pulses could be injected directly into the preamplifier of the chip
 - The chip sees the silicon during this measurements through the inputs, but its more or less "dead"
- The readout pointer(in an internal readout buffer) could be set in respect to an external trigger in steps of 25 ns
- The trigger to testpulse relation could be set in 0.5ns steps
- We "walked" the pulse by changing the trigger-pulse timing in 6ns steps, at each step taking one set of data; thus measuring the shape of the testpulse for all channels simultaneously

Introduction Setup Measurements Conclusions	 Beetle testpulse and shaper Noise and pedestals Depletion Depth/external bias Voltage Cosmics(?) and source
--	--

Shaper

- For our measurements the following shaper values/registers were changed:
 - Ipre sets the preamplifier bias current;
 Higher Current -> decrease in risetime
 - Vfs controls the shaper feedback resistance; higher values -> enlarged peaking time and voltage

• The effect in the red curve is probably a timing glitch, data points around(or after) 75ns probably coming from a neighbouring channel (the testpulse is inverted on injection for neighbouring channels)

Noise and pedestals

 The average and envelope of the analogue data over many (of the order of 1000) measurements was taken

Depletion Depth

- Our first approach was to exploit the expectation that the noise is inverse proportional to the depletion depth
- The depletion depth should be roughly proportional to the square-root of the external bias voltage
- Thus by changing the external bias voltage and measuring noise characteristics we tried to measure the depletion depths and find the point of full depletion

- First results look promising -> supposedly full depletion is reached before 100V external bias voltage
 - Decision on more data points was taken

 No relation of external bias voltage to noise could be seen anymore

17

Interpretation

- Due to the DC-coupling of detector to the chip it could be that the noise/depletion depths relation can not be measured
- The assembly was quite warm due to the hot voltage regulator and enclosed box, thus the thermal noise probably dominated the later noise measurements

Introduction
SetupBeetle testpulse and shaperNoise and pedestalsNoise and pedestalsMeasurements
ConclusionsDepletion Depth/external bias VoltageCosmics(?) and source

Leakage current

- To check if the external bias voltage had any effect on the silicon strip characteristics we measured the bias voltage
- -> The assembly still worked

Cosmics?

- We tried to measure some cosmics signals, but did not succeed
 - The large noise (temperature of 30° in comparison to normal operation at -10°) did, if maybe not being the main reason for failure, surely impede the measurement

Using a beta-source

• We inserted a strontium-90 source into the box, right underneath our strips

Introduction Setup Measurements Conclusions

Conclusions

- Our operation conditions were suboptimal, mainly concerning the operation temperature and thus noise
 - The system was also not fully stable over time
- But still some nice measurements could be made
- The learning factor was quite large for all of us