

Calorimeter R&D for Future Calorimeters

Characterisation of Silicon Based Photomultipliers

Alexander Tadday Kirchhoff Institute for Physics

Deutsche Forschungsgemeinschaft

Outline

- Photodetectors & the Silicon Photomultiplier
- Two Applications:
 - Calorimetry
 - Positron Emission Tomography
- Characterisation of Silicon Photomultipliers

Photodetectors

• Photomultipliers:

- High Gain $(G = 10^6)$
- High operation voltage (few KV)
- Bulky, sensitive to magnetic fields

Photodiodes, Avalanche Photodiodes (APDs)

- Low Gain
- Compact & insensitive to magnetic fields
- Silicon Photomultiplier
 - High Gain $(G = 10^5 10^6)$
 - Low operation voltage (HV<100V)
 - Compact & insensitive to magnetic fields

Many application fields

Photomultipliers

Silicon Photomultiplier: Geiger Mode

Silicon Photomultiplier: Linearity

- Signal: $\mathbf{S} = \mathbf{\Sigma} \, \mathbf{s_{pixel}}$
- Linear response for N_{ph} << N_{pix} (typical: N_{pix}=1000/mm²)

Application: Two Examples

Imaging Calorimeter

- Jet energy resolution improvement
- Isolate neutral from charged components → High granularity!
- Insensitivity to magnetic fields
 → SiPM
- Not just a concept!
 → Prototype

and emission spectrum of the WLS fibre.

AsalogueeHadronic Galorimeter Prototype (CALdefedur Lin (LAL). A detailed description of this chip can be found in [27]. The ASIC ch

used in two di opin-ally fit th converter (AD amprication is electron spectr physics mode

- vsics mod logue to di 40 ns) and e single pl is needed. tely facto:
- Direction

- 1m³ physics prototype (steel-scintillator sańdwich, 2cm steel, 0.5cm scint.)
- Test beam at CERN and FNAL
- HD: Test-beam activities, SiPM calibration, readout electronics

One Layer of the HCAL

- High granularity centre: 3x3x0.5 cm³
- Organic scintillator (blue emission)
- SiPM readout
 Green sensitive →
 wavelength shifting fibre (wlsf)
- Possible: MPPCs
 Blue sensitive →
 direct readout without wlsf

Positron Emission Tomography

- Positron Emitting Nuclei (¹¹C, ¹³N, ¹⁵O, ¹⁸F)
- Coincidence events
 → Line of Response
- Background Reduction
 - Energy Resolution
 - Timing Resolution
- Use MPPCs:
 - Blue sensitiveness \rightarrow LSO
 - Compactness (spatial resolution)
 - Insensitivity magnetic field (PET+MRI)

Characterisation of SiPMs

- Test stand for SiPM measurements
 - Gain
 - Dark-rate
 - Photon Detection Efficiency
 - Uniformity tests
- PET Application
 - Energy & Timing

Photon Detection Efficiency Measurements

PDE = f(I_{SiPM}, I_{PIN}, Gain, f_{calib})

PDE Measurement Results

- MPPC: blue sensitive
- SensL SPMScint: green sensitive
- Further investigation necessary (crosstalk, after-pulses, dc light source, systematic errors)

Uniformity Tests

- Automated surface scar with small light spot
- Single pixels can be resolved
- Tool for uniformity tests
- Future: Single pixel characterisation

Hamamatsu MPPC 1600 pixels $25\mu m$ pitch

- Energy Resolution competitive to PMT readout (LSO: 10%, LFS : 11%)
- Timing resolution of 578ps

Conclusion

• <u>R&D for SiPM use in future detectors</u>:

- Characterisation setup ready for testing Gain, dark-rate and PDE measurements (350 - 1000nm)
- Accurate positioning → single pixel measurements recovery time, crosstalk, PDE without geometrical effects

• Future Plans:

- Development of infrastructure allowing large scale quality assurance tests
- PET-prototype in co-operation with DESY