

Physics Performance of ALICE

- Overview
 - The LHC as Ion collider
 - SPS-RHIC-LHC
 - Global properties in the LHC regime
- ALICE and its experimental strategy
 - Suite of detectors
 - Performance
 - Status

Heavy Ion Collisions

• Running conditions:

Collision system	√s _{nn} (TeV)	L₀ (cm⁻²s⁻¹)	<l>/L₀ (%)</l>	Run time (s/year)	σ _{geom} (b)
рр	14.0	10 ³⁴ *		107	0.07
PbPb	5.5	10 ²⁷	70-50	106 **	7.7

* $L_{max}(ALICE) = 10^{31}$ ** $L_{int}(ALICE) \sim 0.7 \text{ nb}^{-1}/\text{year}$

 + other collision systems: pA, lighter ions (Sn, Kr, Ar, O) & energies (pp @ 5.5 TeV).

From SPS to RHIC to LHC 'hotter – bigger – longer lived'

Formation time τ_0 3 times shorter than RHIC Lifetime of QGP τ_{QGP} factor 3 longer than RHIC Initial energy density ε_0 3 to 10 higher than RHIC

Central collisions	SPS	RHIC	LHC	
s¹/²(GeV)	17	200	5500	
dN _{ch} /dy	500	850	2–8 x10 ³	
ε (GeV/fm³)	2.5	4–5	15–40	
V _f (fm³)	10 ³	7x10³	2x10⁴	
τ _{qgP} (fm/c)	<1	1.5–4.0	4–10	
τ ₀ (fm/c)	~1	~0.5	<0.2	

Novel aspects... Multiplicity

Even with RHIC data extrapolation to LHC uncertain Expect multiplicity in range dN/dy (charged) ~ 1500 to 6000 ALICE optimized for dN/dy(charged) 4000; operational up to ~ 8000

- Probe initial partonic state in a novel Bjorken-x range (10⁻³ 10⁻⁵):
 - nuclear shadowing,
 - high-density saturated gluon distribution.
- Larger saturation scale (Q_s=0.2A^{1/6}√s⁵= 2.7 GeV): particle production dominated by the saturation region.

Alice : required p_T reach

ALICE Physics Reach...

- Global properties
 - Multiplicities, η distributions
- Degrees of Freedom vs Temperature
 - Hadron ratios and spectra
 - Dilepton continuum
 - Direct photons
- Collective effects
 - Elliptic flows
- De-confinement
 - Charmonium, bottonium spectroscopy
- Chiral symmetry restoration
 - Neutral to charge ratio
 - Resonance decays
- Partonic energy loss in QGP
 - Jet quenching, high p_T spectra
 - Open charm and beauty
- Geometry of emission
 - HBT, zero-degree energy flow
- Fluctuations and critical behavior
 - Event-by-event particle composition and spectroscopy

June 2005

- Large Acceptance Coverage
- Large Momentum Coverage (from 100 MeV/c to > 100 GeV/c)
- High Granularity (designed for dN/dy ~ 8000, i.e. 15 000 particles in acceptance)
 - Spectroscopy and Identification of
 - hadrons and leptons
- c-, b- vertex recognition
- Excellent photon detection (in $\Delta \phi = 45^{\circ}$ and $\eta = 0.1$)
- Large acceptance em calorimetry very desirable, for which only the infrastructure exists, but not yet the detector

ALICE collaboration

ALICE Detector

Stable Layout; Services (Cables, Cooling, Gas...)being installed

ALICE Detector Suite: selected highlights

- Inner Silicon Tracker
 - Pixels, Si- Drift, Si- strips
- TPC : the world's largest
 - Very ambitious performance specifications
 - Highly integrated readout electronics
- Transition radiation detector
 - 1.2*10⁶ channels; trigger capability; (need collaborators for completion; discussions with Japan)
- HMPID : large area RICH with CsI photo-cathodes
- FMD: large area Si- multiplicity detector array to complement central tracking
- PHOS : a 20 000 PbWO₄ crystal calorimeter (need collaborators for completion; discussions with China and Japan)
- Muon Spectrometer
 - with the world's largest warm dipole
 - Advanced 1.2*10⁶ channel precision tracker
- Infrastructure for large EM Calorimeter installed
 - In discussion with US groups
- And, and ... arrays of specialized detectors

Inside the Solenoid for the central detectors; L3 legacy of LEP

Preparing Space Frame for TPC/ITS/TRD/TOF Pre-Integration

Pre-Integration of ITS/TPC/TRD/ TOF ongoing at present moment

ALICE Layout: Tracking (and event characterization)

ALICE Tracking

Combine : ITS + TPC + TRD

June 2005

Inner Traking System

ITS = SPD + SSD + SDD

TPC layout

GAS VOLUME 88 m³

DRIFT GAS 90% Ne -10%CO₂ **Field cage** finished **FEE** finished **Read out** chamber finished At present preintegration of field cage into experiment

Readout plane segmentation 18 trapezoidal sectors June 2005 each covering 20 degrees in azimuth

TPC principle

ALICE TPC has 88 µs drift time TRD (2 µs drift only) can serve as trigger for TPC

Mounting the TPC Central Electrode With 10⁻⁴ parallelism to readout chambers

Pad chambers with a total of 1 200 000 channels

TRD ; Chamber production in Heidelberg,GSI, Dubna, Bucharest

Chamber production in Heidelberg

Electronics and MCM bonding at FZ Karlsruhe

Chamber production lab in JINR

TRD prototype

- TRD will incerase the pion rejection by a factor 100 for e above 3 GeV/c
- TRD's momentum resolution of 5% at 5 Gev/C will be combied with TPC and ITS
- TRD needs a high granularity in order to cope with the high multiplicity and thus have an acceptable occupancy of about 34% at dN/dy=8000
- Radiation thickness of TRD will be ~ 15% X/X0

Combined Momentum Resolution

ALICE LAYOUT: PID

Under study: extension of PID to higher momenta

 Combine TPC and TRD dE/dx capabilities (similar number of samples/track) to get statistical ID in the relativistic rise region

Hadron and Lepton Identification

ALICE PPR CERN/LHCC 2003-049

June 2005

c/b Quarkonia

• 1 month statistics of PbPb $\sqrt{sNN=5.5 \text{ TeV}}$

Looking forward to first operation

- to a timely completion of LHC and experiments construction in April 2007;
 - Accelerators and experiments are in the production phase.
- For an exciting decade of HI physics in a new regime physics
 - Detailed physics program is taking shape (Physics Performance Reports, Yellow Report,..)
- The 2005 2007 challenge:
 - Keep the detector construction on its rather tight time scale
 - Continue preparation and bring to ready-state the physics analysis programs
 - demonstrate world-wide distributed Monte-Carlo production and data analysis.

Thank you !