Basics of Dynamic Reconfiguration

Gerd Tröger Kirchoff-Institut für Physik, Univ. Heidelberg

troeger@kip.uni-heidelberg.de +49-6221-54-9817

Contents

- Introduction to FPGAs
- Special Features
- Reconfiguration, Active Partial Reconfiguration
- Benefits and Applications
- Intelligent Detectors
- Problems

Introduction to FPGAs

- FPGA = Logic + Memory + Routing + support infrastructure
- Logic: LUTs (lookup-tables)
- Memory: flip-flops
- Routing: multiplexers (local routing), interconnect structures
- Support: global clock trees, I/O pads, power
- Major Players: Actel, Altera, Xilinx

FPGA fabric

- Most common LUT: 4 inputs, 1 output (+inverted)
- Flip-Flops: configurable to different modes (D, JK; reset modes; clock edge selection; ...)
- LUT + FF + local routing = "LE" (logic element, Altera), "Slice" (Xilinx, 2 LUTs + 2 FFs)
- 4 Slices + global interconnect = "CLB" (configurable logic block)

FPGA fabric: Slice

FPGA fabric: CLB

FPGA fabric: CLB

FPGA fabric: Routing

FPGA fabric

- All of the technology above is 20+ years old,
 +/- tuning of parameters
- What are the innovative parts?

Special Features

- Clock Management: PLLs/DLLs, distribution
- Fixed Units:

Block RAMs

Multipliers (for DSP applications)

(De)Serializers (Multi-Gigabit Transceivers)

Processors (PowerPC, Arm)

near future: Ethernet MAC

- Others: I/O flexibility, radiation hardening
- Partial Reconfigurability

Reconfiguration

- Most commonly: full configuration only, device reset
- A couple years ago: multiple configuration planes, memory-mapped [out of production], swappable
- Active Partial Reconfiguration: ca. 6-8 years, since Virtex series, uninterrupted operation
- has spawned (or re-awakened) a dedicated field of research: "Dynamic Reconfiguration", "Reconfigurable Computing"

Active Partial Reconfiguration

- How does it work?
- Configuration Space divided into units, "frames" in Xilinx terminology
- 'Partial': frames are individually reconfigurable
- 'Active': without interrupting the device, glitch-free: no change → no signal flanks
- Configuration is 'atomic operation' (no bit shifting)

Configuration Frames

Benefits & Applications (1)

Functional Modules

- Flexibility in Time and Space
 - more functionality per device (time sharing)
 - several implementations for the same functionality (size/speed tradeoff) depending on avail. resources
- Can Use Smaller Devices
 - power & cost issues
 - HE physics and space applications: material budget, heat dissipation

Benefits & Applications (2)

- More Flexibility for the Designs
 - replaceable functional modules
 - additional degrees of freedom for the algorithms

- Faster Design Space Exploration
 - for example when using genetic algorithms

Benefits & Applications (3)

- Routing
- Fact: FPGA = 90% routing, 10% logic
- Routing is a reconfigurable resource, too
- Can it be used, somehow?
- Difficulty: few appropriate models for datapath oriented programming

Benefits & Applications (4)

Fault Tolerance

- work around damaged cells
- radiation tolerance

Alternative Path to Access Data

- for relatively slow data, like command & control, monitoring
- saves a few FPGA pins
- does not require special controller or busses inside the FPGA

App. In Intelligent Detectors

- Radiation Tolerance
 - Scrubbing
 - Identification of Radiation Sensitive Parts
- Routing
 - Potentially using the FPGA as a Delay Cell
- Command & Control, Monitoring
 - Combining all Devices of a System using the FPGA File System over the Network
- Functional Modules
 - triggers, filters

Problems

- Awareness
- Not fully developed, ready-to-use technology
- Design Methodology Issues
- Inherent Limitations

The End

Thanks for your attention.