

Reconstruction of neutral π^0 , η and the quest of direct photons in CERES

Rachik Soualah Physics Institute, Heidelberg.

Outline

- Motivation.
- NA45/CERES experimental setup with TPC.
- Feasibility of π^0 and η detection in CERES.
- Study of π^0 and η acceptance in CERES.
- Expected number of π^0 and η after analysis.
- Analysis scheme.
- dE/dx Particle Identification with the TPC.
- The π^0 mass distribution.
- Observation of Direct Photons.
- Experimental Signatures of QGP at Alice.

Motivation

- One of the main sources of systematics errors in the measurement of the dilepton at CERES comes from the fact that the η/π^0 ratio is not measured with a good accuracy at SPS energies.
- In heavy ion collisions, the decay $\pi^0 \rightarrow \gamma \gamma$ is the dominant mechanism that produces photons. The π^0 mesons were detected by calculating the invariant mass of photon pairs.
- Prepare the tools for the same type of π^0 , η and γ analysis for proton and heavy ion collisions at LHC.

NA45/CERES experiment setup

- SiDC1+2: Vertex reconstruction.
- RICH1+2: Electron ID .
- **TPC:** momentum of charged particles, particle ID.

NA45/CERES experiment setup

Principle of The RICH detectors

- Cherenkov photons are emitted under constant angle to the trajectory of a particle, if its velocity exceeds the velocity of light in the radiator gas.
- The photons are focused by a mirror onto a ring at the surface of a position-sensitive photon detector.

The CERES TPC

- A charged particle passing the active volume of the TPC ionizes the gas along its trajectory.
- The electrons drift towards the anode wires on the readout chambers.

IRTG meeting, Heidelberg, July 2006

Feasibility of π^0 and η detection in CERES

• γ detection through conversions in RICH 2 mirror

Study of π^0 acceptance in CERES

- Number of decays: 66506
- Decays in the detector : 5000
- Acceptance :0.075

Study of η acceptance in CERES

Calenda Van Entrina

0.249

Maan Mean (

Coming Apple 16

0.2403

•
$$dN/dP_t = C_2 P_t \exp(-m_t/T)$$

Temp (η) : 0.24 (GeV)

ψ versus τ∦0|:p_{.τ}

- Number of decays: 116279
- **Decays in the detector : 5000**
- Acceptance :0.043

Opening Angle (- ५,५५)

Expected number of π^0 and η after analysis

• BR x 500 $\pi^{0/}$ event x acceptance x N event x efficiency

0.98798 x 500 x 0.075 x 30 x 10⁶ x efficiency 1.1 x 10⁹ x efficiency = $1.8 \times 10^6 \pi^0$ if we take the efficiency $\approx (0.04)^2$ from the radiation length

•
$$\eta / \pi^0 = 0.0857$$

The thermal model of P. Braun-Muzinger,
 J.Stachel, I.Heppe.
 Phys.Lett. B465 (1999) 15-20

• BR x 42 η / event x acceptance x N event x efficiency

Analysis scheme

Tracking **Electron identification** Pairing (e+e- $\rightarrow \gamma$) Identification of γ conversions Pairing γ - γ Invariant mass in the same event Mixed event and background substraction Invariant mass of π^0 as function of pt and y Efficiency correction Transverse momentum spectrum of π^0 (η)

dE/dx Particle Identification with the TPC

- Charged particles lose energy while traversing matter.
- The energy loss per unit distance along a track, dEdx, in the TPC gas is described by the Bethe-Bloch function:

$$-dE/dx = Kq^{2} \frac{Z}{A} \frac{1}{\beta^{2}} \left(\frac{1}{2} ln \frac{2m_{e}c^{2}\beta^{2}\gamma^{2}T_{max}}{I^{2}} - \beta^{2} - \frac{\delta}{2}\right)$$

- The knowledge of both a predicted dEdx value (Bethe-Bloch function) and the resolution of dEdx provides a powerful tool for particle identification.
- With both, a known fraction of a certain particle band can be sacrificed in order to eliminate other particles.

Ionisation variation with particle type

- $P=m\gamma v=m\gamma\beta c$
- variation in *dE/dx* is useful for particle ID
 - variation is most
 pronounced in low
 energy falling part of
 curve
- if you measured P and dE/dx you can determine the particle mass and thus its "name"

IRTG meeting, Heidelberg, July 2006

R.Soualah

The π^0 mass distribution

• CERES (since 2 weeks ago):

Direct Photons

- Photons in heavy ions collisions are mainly produced by the decay of hadrons.
- the examination of direct photons provides a tool to study the different stages of a heavy ion collision, especially the formation of a QGP.

• Photons : - from the hot and dense medium (direct photon),

- from decay of neutral hadrons.

IRTG meeting, Heidelberg, July 2006

R.Soualah

Observation of Direct Photons

- One measure photons Directly using calorimeter, this method is applied by WA98.
- Another way is to identify photons by their conversion into e⁺ e⁻ pairs was done by CERES.
 (using <u>96 setup</u> but is was not successful).

Alice and Experimental Signatures

IRTG meeting, Heidelberg, July 2006

R.Soualah

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

17

Summary

- Ongoing analyses for π^0 and η .
- If there is enough data for π^0 and η mesons, we can study direct photons via the conversion method.
- If LHC data comes early enough one can possibly even apply the prepared analysis routines to first data.

Thanks!