Quasi-real photo-production of hyperons and their impact on Λ^0 polarization measurements

Andreas Reischl

NIKHEF

ITRG 29. June 15:30 PI

A. Reischl (NIKHEF)

photo-production of hyperons

29 June 2007 1 / 20

Outline: Why measuring hyperon rates?

★ ∃ ► 4

The HERMES experiment

acceptance of $|\theta_x| < 170$ mrad and $40 < |\theta_y| < 140$ mrad kinematic 0.02 < x < 0.8 and $0.2 < Q^2 < 20$ GeV²

A. Reischl (NIKHEF)

The Lambda Wheels (LW)

Wheel shaped silicon strip detector with two double sided sensors Increased geometrical acceptance for the reconstruction of Λ s

A. Reischl (NIKHEF)

LW: closer look at the detector

module consists of two sensors; 516 strips; pitch 160 μ m trapezoidal shape with an apex of 30° degrees

A. Reischl (NIKHEF)

LW: results of the commissioning

Result

- efficiency reaches above 90 %
- Vertex resolution @ z = 0 cm of 0.1 cm

A. Reischl (NIKHEF)

What is a baryon and hyperons?

Definition

A hyperon is a baryon which contains at least one strange quark.

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. These are a few of the many types of baryons.										
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin					
р	proton	uud	1	0.938	1/2					
p	antiproton	ūūd	-1	0.938	1/2					
n	neutron	udd	0	0.940	1/2					
Λ	lambda	uds	0	1.116	1/2					
Ω-	omega	SSS	-1	1.672	3/2					

Example

the Λ^0 is a hyperon containing a up a down and a strange-quark

A. Reischl (NIKHEF)

How to measure polarization?

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z \quad (1)$$

- measure ΔΣ by evaluating asymmetries of cross sections
- alternatively via e.g. Λ decay distributions

Goals

- reconstruct as many hyperons as possible
- calculate production cross-section
- with MC evaluate 4π cross-section
- calculate feeding via decay of heavier hyperons

How to reconstruct a hyperon?

Requirements

- positive hadron PID requirement for p and π
- at least two hadrons of opposite sign
- one identified as a proton by the RICH
- energy of proton > energy of pion
- distance of closest approach DCA < 1.5 cm

How to measure the Λ polarization?

the decay protons are distributed like

$$\frac{dN}{Nd\Omega} = \frac{1}{4\pi} (1 + \alpha \vec{P} \cdot \vec{k}) \quad (2)$$

the spin transfer to a Λ^0 can be measured

$$P^{\Lambda} = P_b \cdot D(y) \cdot D^{\Lambda}_{LL'} \quad (3)$$

with the spin transfer coefficient

$$D_{LL'}^{\Lambda}=rac{G_{1,f}^{\Lambda}(z)}{D_{1,f}^{\Lambda}(z)}pproxrac{\Delta q_{u}^{\Lambda}}{q_{u}^{\Lambda}}$$
 (4)

How to get the yield?

analyze invariant mass spectrum

- fit peak to determine position and width
- determine background shape for subtraction
- count the content of the peak
- evaluate error from content and background

How to get the yield?

analyze invariant mass spectrum

- fit peak to determine position and width
- determine background shape for subtraction
- count the content of the peak
- evaluate error from content and background

< ロ > < 同 > < 回 > < 回 >

Cross sections in the HERMES acceptance

$$\sigma_{acc} = \frac{N}{\mathcal{L} \cdot \mathbf{B} \cdot \epsilon_{d} \cdot \epsilon_{t}} \qquad (5)$$

- N : number of counts
- \mathcal{L} : luminosity normalization
- B : branching ratio

Result

- possible to reconstruct an manyfold of hyperons
- Monte Carlo does not describe the production well

A. Reischl (NIKHEF)

Cross sections extrapolated to 4π

$$\sigma_{4\pi} = \sigma_{acc}/\epsilon_g \cdot (2J+1)$$
 (6)

- σ_{acc} : cross section in the HERMES acceptance
- ϵ_g : MC efficiency of the acceptance divided by the 4π efficency

Result

• difference in slope for particles and anti-particles

Result

- about 50 % of the Lambdas are coming from heavier hyperons
- Simulations based on theory does not describe the production well
- has to be taken into account for Λ polarization measurements!

Summary and Outlook

Summary

- test, build and commission a novel detector: LW
- reconstruct a manyfold of hyperons: Λ^0 , Σ^{0+} , Ξ^- and $\Sigma^{*\pm}$
- determined cross sections and feeding of hyperons

Outlook

- participate in novel detector research: RPC
- contribute to more new (hyperon) physics: FOPI
 - determination of inclusive cross section of strange particles
 - In-Medium effects on π induced strangeness production
 - Kaonic nuclear cluster and excited Λ*

A (10) A (10)

Sigmas

 Σ^+ and Σ^0 (and $\bar{\Sigma}^+$ and $\bar{\Sigma}^0$) have been reconstructed as well

Omega

upper limit for the Ω^- is < 61 @ 3σ confidence

29 June 2007 17 / 20

э

Contribution to the $\bar{\Lambda}^0$ sample

result the result is quite similar A. Reischi (NIKHEF) photo-production of hyperons 29 June 2007 18/20

Hyperon table

	spin	iso	mass	quark	${oldsymbol c} au$	width	decay	BR
			[MeV/c ²]		[cm]	[MeV]		[%]
Λ^0	1/2	0	1115.683	uds	7.89		$p \pi^-$	63.9
Σ^+	1/2	1	1189.37	uus	2.404		$p \pi^0$	51.6
Σ^0	1/2	1	1192.642	uds	22.2E-7		$\Lambda^0 \gamma$	100
Σ^{-}	1/2	1	1197.449	dds	4.434		n + X	98.8
Ξ^0	1/2	1/2	1314.83	uss	8.71		$\Lambda^0 \pi^0$	98.5
Ξ^-	1/2	1/2	1321.31	dss	4.91		Λ^0 π^-	98.9
Σ^{*+}	3/2	1	1382.8	uus		35.8	Λ^0 π^+	88
Σ^{*0}	3/2	1	1383.7	uds		36	$\Lambda^0 \pi^0$	88
Σ^{*-}	3/2	1	1387.2	dds		39.4	Λ^0 π^-	88
Ξ *0	3/2	1/2	1531.8	uss		9.1	$\Xi \pi$	100
Ξ^{*-}	3/2	1/2	1535.0	dss		9.9	$\Xi \pi$	100
Ω^{-}	3/2	0	1672.45	SSS	2.461		Λ^0 K ⁻	67.8

-2

<ロ> <同> <同> < 同> < 同> 、

Physics motivation

29 June 2007 20 / 20

э

photo-production of hyperons

A. Reischl (NIKHEF)