Characterisation of Silicon Photomultipliers

Alexander Tadday

Kirchhoff-Institut für Physik Heidelberg

Outline

- Photomultipliers and Photodiodes
- Concept of a Silicon Photo-Multiplier SiPM
- International Linear Collider: Hadronic Calorimeter
- Characterisation Measurements
- Positron Emission Tomography

Photomultipliers

- Play important role in many physics experiments
- High Gain (internal amplification)
- typ. value: 10⁶
- → 10⁶ secondary electrons per initial photoelectron pe

• Low intensity light detection possible

Detectors

- Photodiodes, PIN-Diodes (no Gain, linear response)
- Avalanche Photodiodes (APDs), applied reverse bias voltage, (gain up to 1000, linear response)
- Higher gain can be achieved when operating a few volts over V_{Breakdown} (no linear response!)

Geiger Mode Avalanche Photodiode (GAPD)

- Striking Photon results in "self sustaining" avalanche which has to be stopped (quenched)
- Passive quenching: large resistor in series: reverse voltage on the pn-junction decreases because of large voltage drop on quench-resistor during breakdown.
- High Gain! Drawback: Resulting Signal is not proportional to the number of photons: binary (yes/no)! No information about number of photons!

Concept of a Silicon Photomultiplier

- Array of many GAPD's (typ. 1000/mm²) connected to common output
- Resulting analogue signal is prop. to number of photons for $N_{ph} << N_{pix}$

Summary of SiPM properties

- High Gain 10⁵-10⁶
- Very compact (IxI 5x5mm²)
- Robust
- Low operating voltage (<100V)
- Insensitive to magnetic field

Broad spectrum of applications

Fields of Application

- Hadronic calorimeter of the future project: International Linear Collider (ILC)
 - e+ e- Collider with total length of 30km, $\sqrt{s} = 500 \, GeV$ Upgrade: $\sqrt{s} = 1000 \, GeV$

• Positron Emission Tomography (PET)

ILC Large Detector Concept (LDC)

- Large Volume TPC as main tracking device
- High granular electromagnetic and hadronic calorimeter (HCAL)
- Compact design of HCAL within strong magnetic field of 4T
- High longitudinal and transversal segmentation: Cell-size 3x3x0.5cm³ (Imaging Calorimeter)

HCAL Prototype, DESY aboratore Accélér

10

- Steel-scintillator Sandwich structure. Plastic scintillator (blue)
- I m³ Prototype made of 38 Layers 216 Channels per Layer
- Equipped wit SiPM's from MEPHI/ PULSAR (enhanced green sensitivity)

Scintillation Tile with SiPM Readout

- Wavelength shifting fibre converts blue scintillation light into green light (SiPM has enhanced green sensitivity)
- The MPPC from Hamamatsu gives the option for a direct readout without WLSF
- To ensure proper operation, SiPMs need to be tested and characterised

Characterisation Measurements

Gain Measurement

Photoelectron Spectrum

Oscilloscope picture, V:10mV/div, H: 5ns/div

- Single Photon Signals can be discriminated.
- Histogram peaks correspond to a certain number of p.e.
- "Distance" between two neighbouring peaks equals the Gain M
- Obtained by applying the Fast Fourier Transformation

40

20

⁰40

80

60

100

120

140 160

180

200

220

QDC-Channels

240

Gain measurement results

8 Samples from HAMAMATSU (MPPC) and SensL (SPM) have been tested. All have an active area of I×Imm² 100 - 1600 Pixels

Dark-rate

- Electron hole pairs resulting in a Geiger discharge cannot only be generated by photons.
- Thermal excitation can occur if the band gap is smaller than the thermal energy of a charge carrier. (0.0259eV at room temp.)
- Tunnel excitation: If an electric field is present, charge carriers can tunnel through the band gap into a state in the conduction band with the same energy. Important for SiPMs because of the strong electric field.

Tunnel excitation

Dark-rate measurement

Dark-rate measurement results

The two samples from SenSL show a high dark rate up to 10⁷ Hz (at 0.5pe. threshold, strong reduction for higher counting threshold)

Photon Detection Efficiency (PDE) $PDE = (1 - R) \cdot \epsilon_{geo} \cdot \epsilon_{avalanche} \cdot QE$ Quenching resistor Active area • R : Reflection coefficient A_{Active} $\epsilon_{geo} = \frac{1}{A_{Total}}$ 15.0 ш • $\epsilon_{avalanche}$: Probability for a 16 free charge carrier to initiate a 7.4 um Geiger discharge $QE: \mathbf{Q}uantum efficiency$ Single Pixel Ficture HAMAMATSU y for charge carrier Aluminium track connecting individual pixels

PDE measurement

Micrometer Positioning Stages xy-plane

> Neutral Filters (used to modify the light intensity)

Metal Box containing MPPC and PIN-diode connected to the picomaperemeter

Size of the light spot

- Active area MPPC I×Imm²
- Active area PIN-diode 3×3mm²
- Diameter of the light spot has to be smaller than 1mm. Otherwise light will be lost.
- The diameter was measured by moving the MPPC in the x- and y-direction, respectively while measuring the photocurrent.

Photocurrent Profile

→ Light spot diameter d≈0.7mm
→2Centre is at 0.6mm

Linearity of the MPPC

I. Use PIN-diode (linear behaviour) for calibration of neutral optical filters

2. Measure photocurrent of MPPC (HAMAMATSU 1600 pix) as a function of light intensity

Light Intensity was chosen in order to ensure linear behaviour of the MPPC

First Results

Calibration data sheet

$$PDE = \frac{I_{MPPC} \cdot \vec{R} \cdot h \cdot c}{M \cdot e \cdot I_{PIN} \cdot \lambda}$$

The measured shape of the curve is in agreement with the expectation. The functionality of the setup was proven, however more systematic measurements are needed.

Other Application: Positron Emission Tomography (PET)

Introduction to PET

Why use MPPC's

- Scintillation light from LSO is blue (Peak at 420nm)
- MPPC has an enhanced sensitivity in the blue range

Why use MPPC's

- Spatial Resolution
 - Small size

possibility to study single crystal readout with size from I×I-3×3mm²

- Study the fusion of PET and Magnetic Resonance Imaging (MRI) (small PET detector contained in MRI) because of the insensitivity to magnetic fields.
- High gain, low operation voltage

Reduction of Background

Energy Resolution

30

Why is energy resolution crucial for PET? Cut scattered events but keep true events implies need good energy resolution

Timing Resolution

Good timing resolution helps to keep the coincidence window as small as possible to reduce Random coincidences.

Time of Flight PET

• Accuracy of position measurement is: (for $\Delta t = 500 \text{ ps}$)

$$\Delta x = \frac{c}{2}\Delta t = 7.5cm$$

 No gain in spatial resolution (typical value 4-6mm), but the signal to noise ratio improves. (Improving the sensitivity of the detector)

Used Scintillators

Crystal	Size	Peak emission	Decay time
LSO (Lutetium Orthosilicate), Hilger Crystals	$\frac{ \times \times 5mm}{3}$ $\frac{3\times3\times15mm}{3}$	420nm	40ns
LFS (Lutetium Fine Silicate), Lebedev Institute	3×3×15mm 3	blue	similar to LSO

Readout with MPPC's from Hamamatsu

Pixels	Active area	Operating voltage	Dark rate 0.5 pixels	Dark rate I.5 pixels	Gain 10 ⁵
400	× mm ²	76V	220k - 250kHz	9k - I0kHz	7.4 - 7.5
3600	3×3mm ²	70V	3.2 - 3.3 MHz	320k - 330kHz	7.4 - 7.5

|×|×|5mm³ LSO with |×1mm² MPPC

SO negligible Energy resolution of 14% (fwhm) was measured

Coupling between crystal and MPPC is main systematic error for the small crystals ≈10%

Improvement possible!
3×3×15mm³ LSO & LFS with 3×3mm² MPPC's

LSO and LFS are equal within systematics ~3% Typical value with "traditional" Photomultiplier tube (511key): 10%

Timing Measurement

Setup

No Preamplifiers needed! Direct evaluation with oscilloscope

Oscilloscope: Tektronix Model 7204, Bandwidth 4GHz, 20GS/s ⇒Time

resolution 50ps

Oscilloscope

Timing Measurement

I. Define coincidence threshold N_{pe} 2. Define timing threshold N_{cut}

$$S_1 > N_{pe} \wedge S_2 > N_{pe}$$

$$\Delta t = t_1(N_{cut}) - t_2(N_{cut})$$

Timing Measurement

"Photoelectric event"

"Background event"

A Background is superimposed and degrades the timing Need to go to high coincidence threshold

Results Timing

Conclusion

- New kind of photon detector is available
- Application in high energy and medical physics possible
- Characterisation setup was assembled
- Build PET-prototype to verify the concept

Thank you for your attention!

Backup

Cpixel and Ubreak

Device	Number of Pixels	U_{break} [V]	C_{pixel} [fF]
HAMAMATSU S10362-11-025C			
Sample 131	1600	-68.21 ± 0.07	22.47 ± 0.02
Sample 132	1600	-68.38 ± 0.07	23.17 ± 0.02
HAMAMATSU S10362-11-050C			
Sample 163	400	-68.2 ± 0.2	101.8 ± 0.2
Sample 164	400	-68.66 ± 0.07	107.4 ± 0.1
HAMAMATSU S10362-11-100C			
Sample 180	100	-68.34 ± 0.06	314.7 ± 0.2
Sample 181	100	-68.8 ± 0.5	313.3 ± 0.5
SensL SPMScint1000X04			
Sample $713/4$	1144	-28.56 ± 0.03	57.78 ± 0.04
Sample $714/4$	1144	-28.52 ± 0.04	60.7 ± 0.5

Bandwidth and Absolute Scale of the Monochromator

- Mounted grating (1200 lines/mm)
- Suitable for wavelengths $\lambda \ge 450$ nm
- The light, present at the exit of the monochromator contains not a single wavelength, but an "area" around the chosen value which is called bandwidth.
- Illuminate monochromator with light of well known wavelength and measure intensity profile $I(\lambda)$

6035 Hg(Ar) 184.9 187.1 194 2 253.65 2654 284.8 302.2 312.571 313.151 313.181 320.8 326.4 345 2 365.02 404.66 435.84 546.07 576.96 579.07 615.0 1014.0 1357.0 1692.0 1707.3 1711.0

Spectral Calibration

Peaks are shifted by 2.7 nm
 Bandwidth can be tuned to Inm

HeNe-Laser

- Wavelength (632,8nm)
- Intensity is not constant over long timeperiod (few min.)
- Intensity was observed on a screen.
- Maximum appears at ~635,5nm
 Absolute Calibration (Scale is globally shifted by 2.7nm)

PDE Measurement (Preliminary)

- Measure Photocurrent with PIN-diode.
- Measure Photocurrent with SiPM.

$$PDE = \frac{n_e}{n_p} \qquad n_e = \frac{I_{SiPM}}{M \cdot e} \qquad n_p = \frac{P \cdot \lambda}{h \cdot c} \qquad P = \frac{I_{PIN}}{R}$$

$$PDE = \frac{I_{MPPC} \cdot R \cdot h \cdot c}{M \cdot e \cdot I_{PIN} \cdot \lambda} \qquad \begin{array}{c} \uparrow \\ \text{Calibration data} \\ \text{sheet} \end{array}$$
Still contains Crosstalk and Afterpulses!