Dense Baryonic Matter (Part II)

Today:

- Introduction (Retrospect)
- GSI: SIS-18
 - Experiments
 - Results
- Outlook

IntroductionGSI: SIS-18GSI: SIS-100/300Outlook

Phase Diagram of Nuclear Matter

- normal nucl.
 matter: liquid
 (droplet model)
- heating and compression
 - hadron gas
 - quark-gluon
 plasma
- high ρ, low T

- CSC, CFL

(ABC's of Nuclear Science, LBL) M. Merschmeyer

28. October 2005

The Equation of State (EOS)

saturation density of nuclear matter $\rho_0 = 0.17 \text{ fm}^{-3} = 0.16 \text{ GeV/fm}^3$

• example: internal energy

 $E(\rho,T)\!=\!E_{\mathit{th}}(\rho,T)\!+\!E_{\mathit{c}}(\rho,T\!=\!0)\!+\!E_{\mathit{0}}$

• (in)compressibility

$$K_{\infty} = 9 \rho_0^2 \left[\frac{d^2 E_c}{d \rho^2} \right]_{\rho = \rho}$$

- soft EOS: K ≈ 200 MeV
- stiff EOS: $K \approx 400 \text{ MeV}$

→ astrophysical consequence: neutron star mass limit

Introduction GSI: SIS-18 GSI: SIS-100/300

The Quark Condensate

- QCD vacuum not empty at all: strong condensation of qq pairs
- effective QCD theories predict decrease of <**qq**> with increasing *T* and *ρ*

Outlook

• GOR relations predict ρ/ρ_0 3 4 200 T [MeV] change of particle properties: w. Weise, Prog. Theor. Phys. Suppl. 149 (2003) 1

$$m_{\pi}^{2} f_{\pi}^{2} = -\frac{1}{2} (m_{u} + m_{d}) \langle \bar{u} u + \bar{d} d \rangle + O(m_{u}^{2})$$
$$m_{K}^{2} f_{K}^{2} = -\frac{1}{2} (m_{q} + m_{s}) \langle \bar{q} q + \bar{s} s \rangle + O(m_{s}^{2})$$

M. Gell-Mann, R. J. Oakes and B. Renner, Phys. Rev. 175 (1968) 2195

28. October 2005

IntroductionGSI: SIS-18GSI: SIS-100/300Outlook

Consequence: In-Medium Effects

- quark condensate reduced in hot & dense nuclear matter, particle properties may change
- observables: produced particles
 - masses, widths (ρ , ω ,...)
 - short lifetime (~ 10⁻²³ s)
 - decay in collision zone
 - leptonic decay channels
 - yields, spectra (K⁺,K⁻...)
 - long lifetime (10⁻⁸ 10⁻¹⁰ s)
 - mostly decay outside coll. zone

Introduction GSI: SIS-18 GSI: SIS-100/300

Outlook

Heavy-Ion Collisions (II)

Facilities: SIS, AGS, SPS, RHIC, LHC
 E ~ 100 AMeV – 2.7 ATeV

RBUU: Au+Au 1 AGeV, b=0 fm

- situation at 2 AGeV beam energy:
 - velocity: $\beta \approx 0.9$
 - time scale:

 $t \approx 5 - 10 \, fm/c \approx 2 \cdot 10^{-23} \, s$

- density: $\rho \approx 2 - 3 \cdot \rho_0$

X.S. Fang et al., NPA 575 (1994) 766

GSI: SIS-18

GSI: SIS-100/300

Outlook

GSI: SIS-18

28. October 2005

M. Merschmeyer

7

Introduction GSI: SIS-18

GSI: SIS-100/300

Outlook

The Present: SIS-18

- SIS available since 1990
- particle energies range between 50 – 2000 AMeV
- beam intensities (at highest energies):
 ~ 10⁶/s (on target)
- spill length ~ 10s

GSI: SIS-100/300

Outlook

Accessible Particles (SIS-18)

- new degree of freedom: strangeness
- detection:
 - direct observation (K^{-}, K^{+})
 - reconstruction
 from charged
 decay products
 (Λ, φ, resonances)

Production Thresholds

- beam energies at SIS-18
 - 1 2 AGeV
- typical particle production thresholds for free N+N collisions (in QCD vacuum):
 - 1.6 2.5 GeV
- additional effects in HIC:
 - multi-step processes
 - π +N, Δ +N, ... collisions
 - strangeness exchange
 - e.g. $\pi + \Lambda \leftrightarrow N + K^{-}$

28. October 2005

Process		E _{thr} [GeV]
$N N \rightarrow$	$N K^{+} \Lambda^{0}$	1,58
	$N K^{+} \Sigma$	1,80
	$N N K^{+} K^{-}$	2,50
	$N \equiv K^+ K^+$	3,74

Outlook

The KaoS Experiment

- spectrometer optimized for Kaon detection
 - compact size: flight path from 5.0 – 6.6 m
 → minimize Kaon loss due to decay (cτ = 3.7 m) H
- PID via
 - TOF
 - Cherenkov Det.
- experiment finished...

Introduction

GSI: SIS-18

GSI: SIS-100/300

Outlook

The FOPI Experiment

- multi-purpose detector
 - 4π geom. acceptance
 - drift chambers & scintillators
- strange particle detection
 - Plastic Barrel (K[±]), directly measured via TOF
 - Central Drift Chamber (K⁰,Λ,...) via invariant mass reconstr.

The HADES Experiment

GSI: SIS-100/300

GSI: SIS-18

• High Acceptance Di-Electron Spectrometer

Outlook

- study vector meson
 properties in π+A, p+A and A+A reactions via
 e⁺e⁻ pairs from ρ, ω and φ decays (in the fireball !)
- presented first results on K⁰ production; vector meson measurements under way

28. October 2005

Introduction

Introduction GSI: SIS-18 GSI: SIS-100/300 Outlook

Search for Strange Particles

- At SIS: strange particle production close to / below threshold
 - high sensitivity
 - low yields (P(K±)/Event ~ 10⁻² - 10⁻⁴)
- find / reconstruct particles from background of few tens up to ~200 tracks

Kaon Production

M. Mang, PhD Thesis, IKF, Univ. Frankfurt, (1997)

• K^+ multiplicity rises strongly with $A_{part} \rightarrow$ multi-step proc.

- same behaviour of K⁺ & K⁻
- produced below threshold

Introduction

GSI: SIS-100/300

Outlook

Kaon Rapidity Distributions

 $y_{CM} = y_{lab} - \frac{y_{beam}}{2}$ (symm. system)

- compare transport model calc. to FOPI / KaoS data
- repulsive & attractive kaon-nucleon potentials needed
- problem: reproduce more than one observable at the same time

Ni+Ni, 1.93 AGeV

K⁻/K⁺ Ratios

Data: K. Wisniewski et al., EPJ A9 (2000) 515 $E_{cm}^{(GeV)}$ RBUU: W.Cassing, E.L.Bratkovskaya, Phys.Rept.308 (1999) 65

- probe both particles in the same environment
- IME needed to explain observations

- ratio nearly constant with centrality
- kaon yields linked due to strangeness exchange?

K⁺ Sideflow

J. Ritman et al., Z. Phys. A325 (1995) 355

N. Herrmann et al., Prog.Part.Nucl.Phys. 42 (1999) 187

- study emission of K+
- no (integral) K⁺ flow seen between target & projectile rapidities
- compatible with QMD calc. using in-medium K-N pot.

 Future: measure K⁻ flow using improved TOF information (RPC Barrel)

28. October 2005

K⁺ Differential Sideflow

Ni+Ni, 1.93 AGeV

Ru+Ru, 1.69 AGeV

- K⁺ anti-flowing for low p₊ (w.r.t. protons)
- different flow patterns
- model comparison favors repulsive in-medium potential (~20 MeV)

GSI: SIS-18

\phi Meson Production

- K⁻ is a rare probe; production mechanism understood?
 - IME
 - feeding via ϕ decays or Λ
- φ/K⁻ ratio:
 - $R(130 \text{ MeV}) = (0.44 \pm 0.15 \pm 0.21)$
 - $R(70 \text{ MeV}) = (1.80 \pm 0.60 \pm 0.85)$
- at least 20% of K⁻ originate from decay of a φ meson

EOS from K⁺

- investigate EOS via K⁺ production (sensitive to incompressibility κ)
- use Au+Au to C+C ratio
 - cancel experimental effects
 - avoid influence of cross sections in model calc.
- comparison to theory:
 - soft EOS: κ = 200 MeV
 - hard EOS: $\kappa = 380 \text{ MeV}$
- soft EOS favored

C. Fuchs et al., Phys.Rev.Lett. 86 (2001) 1974

Introduction GSI: SIS-18 GSI: SIS-100/300 Outlook

What have we learned already ?

- particle production
 - multi-step processes
 - models need IM-potentials
 - strangeness exchange
- particle flow
 - supports need of IM-pot.
 - direct observation of K+ proton anti-correlation
- rare probes
 - origin of K^- ?

- systematic studies
 - $EOS \rightarrow soft (?)$

- \rightarrow need higher statistics
 - access to new probes
 - more quantitative studies
 - provide further model constraints

Introduction

GSI: SIS-18

GSI: SIS-100/300

K⁰ & Λ Particle Yields

- dN/dy⁰ distributions of K⁺ and K⁰ agree
- different reaction dynamics for Λ and protons
- comparison to distributions from an expanding (β) thermal (T) source
 - K⁰ distribution reproduced
 - A closer to thermal distribution than protons

28. October 2005

K⁰ Sideflow

- K⁰ flow is compatible with K⁺ results from previous experiment
- ⇒ negligible influence of Coulomb effects
- evidence for IME found in K⁺ sideflow also supported by K⁰ results

28. October 2005

Λ Sideflow

- both, Λ and proton integral and differential sideflow agree
- ⇒ how strong is the inmedium Λ -N potential U_{ΛN}?

What have we learned from SIS-18?

GSI: SIS-18

• got some answers

Introduction

- K⁰ and K⁺ have same flow behavior
- K⁺ flow pattern not caused by Coulomb repulsion
- Λ and proton have same flow behavior
- raised new questions
 - origin of the K^{-} ?
 - baryon dynamics ?

M. Merschmeyer

pending / to come

GSI: SIS-100/300

- K⁻ measurements (flow)
- more on strange Baryons

Outlook

Are there even stranger things ?

Y. Akaishi and T.Yamazaki, Phys.Rev. C65 (2002) 044005 T.Yamazaki and Y. Akaishi, Phys.Lett. B535 (2002) 70

- theoretical calculations predict series of strongly bound states; result of a strongly attractive K⁻ potential
- narrow states (Γ ~ 20 MeV)
- hypothetical decay channels into Λ+ X
- $\begin{array}{rcl} ppK^{-} \rightarrow & \Lambda + p + 263 \; MeV \\ ppnK^{-} \rightarrow & \Lambda + d + 208 \; MeV \\ pppK^{-} \rightarrow & \Lambda + p + p + 219 \; MeV \\ ppnnK^{-} \rightarrow & \Lambda + t + 217 \; MeV \\ pppnK^{-} \rightarrow & \Lambda + ^{3}He + 219 \; MeV \end{array}$