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Introduction

* Motivation
* Diyjet event sketch

* (Confinement & Hadronization
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Why do we care?

* Parton jets will dominate most high Q? events and
many physics signatures

— The jet energy scale 1s the largest contribution to the
error of many measurements

* Measured jet production rates (€.g..)

— allow to check QCD 1n the multi-TeV energy range,
sensitivity for new phenomena

— are vital for the accurate prediction of background for
searches for new physics
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Sample Event Sketch

Hard scattering
— Gluon Radiation

* The event topology is given by:
— The outgoing partons

— Initial and final-state radiation (of gluons)
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Hadronization

* Hadronization 1s the process of formation of hadrons from
,.free* quarks and gluons

= Jets

* QCD perturbation theory 1s not applicable at long
distances

* .Hadronization is not understood from first principle!

Several phenomenological models exist, mainly
— String fragmentation (Lund-Model)
— Independent fragmentation

— Cluster fragmentation
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Confinement

* At short distances the field of
A the two quarks behaves quite
A QED like with gluons as ,,lines

[ 1o

v

* At long distances the flux lines

@@ attract each other, leading to a
linear field

String Fragmentation:

* The gluons are seen as a string between the quarks with a mass
density per length unit

* The string breaks up in multiple places, by forming new quark pairs
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Experimental Methods

* The ATLAS Detector

* Jet reconstruction
* Jet Calibration
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Jet Measurement at ATLAS

* FElectromagnetic Calorimeter
* LAr/lead sampling calorimeter
e ~200,000 readout channels

* Hadronic Calorimeter

* Sampling calorimeter with
scintillating tiles embedded in |
iron(barrel) and LAr/copper in the {
endcaps

* ~21,000 readout channels

* The inner detector consisting of 3 Layers:
— Innermost: High resolution pixel detectors

— Silicon microstrip detectors to provide further high precision space points for
tracking

— A transition radiation tracker (built of straw tubes)
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Jet reconstruction

* Cone algorithm
— A jetis acone of radius R

— Using a ,,precluster® as a seed, the cone is iteratively moved to a
,,stable* position, where the jet axis coincides with summed direction of
all its particles

- ,.Seedless* cone (starting with many seeds distributed in a fine grid) is
theoretically more accurate, but requires significantly more computmg

resources Q
* kT algorithm Q

— A jet is a number of clusters with a certain nearness in relatlve
transverse momentum

— Forms the jet from preclusters by combining clusters close in relative
transverse momentum
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Challenges of jet energy calibration

*  One basic problem 1s the precise energy measurements of hadrons

— Noncompensating calorimeter:

* The hadronic and electromagnetic energy scale is different

* A large number of secondary particles produced are pions, the TP decay

nearly instantly into gammas

* The number of TP created and thus the energy deposited as
electromagnetic component is subject to high statistical fluctuations

— Energy deposited that produces a very small or no response

¢ Excitation and break-up of nuclei
* Leakage

* Slow neutrons

* Jet composition and geometry can vary
widely with 1nitial parton

* The 1P content of a jet can already be
substantial before it interacts with the
calorimeters, thus leading to a high
electromagnetic component
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Jet energy calibration in ATLAS

*  Examples of calibration approaches:
— Hl-style

* Electromagnetic showers (and hadronic showers with dominant
electromagnetic component) are denser

* Weights are applied on cell-level depending on the energy density
— Pisa
¢ Weights are applied based on cell energy and jet energy
— Sampling
* Weights are applied to the different calorimeter layers
* A'bottom up approach in three steps is pursued by the
Hadronic calibration group:
— Cell corrections on the cell level (following the H1 approach)
— Topology dependant corrections on the cluster level
— Event topology corrections
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In situ calibration methods, examples

* Prompt photon production

— qg—Yqand qq— Vg
— Dominant graphs:

570 N

—The well measured energy of the isolated photon is
used to calibrate the jet

* Dijet events can be used to
— Calibrate one part of the detector against another
— Check the calibration and linearity across the detector
— High statistics
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Sample Study — Quark compositeness

* Introduction
* Inclusive jet production rate

* Dijet angular distribution
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Quark compositeness

While quarks appear point-like from distances accessible 1n
collider experiments so far, quark compositeness 1s an
intriguing possibility.

A possible composite nature of quarks can be characterized
by an interference sign and the compositeness scale A.

*  With A'— o quarks are point-like and standard QCD applies

*A lower A leads to qq — qq cross-sections increasing starting at Q? in
the order of A. While pointlike from afar, at close distances,
corresponding to high Q?, the size of the quarks starts to play a role

* The lower limit on A from the Tevatron is 2.0 TeV, independent of
the interference sign
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Inclusive jet production rate

‘Quark compositeness in pp collision‘ ‘ Quark compositeness in pp collision
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* An excess of extremely high energy jets is clearly visible for low a
low scale A

* At A=5TeV ten times the number of jets with ~2 TeV would be
observable compared to standard QCD expectations

Plots: L.Pfibyl, Studies on quark compositeness in ATLAS, 16.06.04 Frederik Riihr. KIP Heidelberg



Dijet angular distribution

| Leading dijet angular distribution | | Leading dijet angular distribution |
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* The measurement of leading dijet angular distributions 1s
quite robust 1n respect to the error of the jet energy scale
and the jet energy resolution

* But: Higher statistics 1s needed

Plots: L.Pfibyl, Studies on quark compositeness in ATLAS, 16.06.04 Frederik Ruhr. KIP Heidelberg



Summary

* Conclusion
*  Qutlook
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Conclusion

* The understanding of jets, and a precise calibration at
ATLAS 1s vital and quite challenging

— The accuracy of most measurements at ATLAS will be highly
dependant on the error of the jet-energy scale

* The statistics available at ATLAS for jet studies will be
1mmense, but even already with low statistics the available
energics allow promising studies

— e.g. after only one good week of running, A can be probed up to
~5TeV, with 100 fb! to 20 TeV and beyond
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Outlook

* A private farm of our group is not only up and running, but
at last ATHENA 1s installed and working

°* An increasing fraction of working time will be put into
calibration and physics 1ssues

Results will follow, stay tuned
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