

Study of Tau Decays with s-Quark Final States/ Preshower Studies at BaBar

Aleksandra Adametz Physikalisches Institut, Universität Heidelberg

- Tau-Physics at BaBar
- Measurement of $|V_{us}|$
- $\tau^- \rightarrow \eta K^- \nu_{\tau}$ Analysis
- Identification of Preshowers
- Application of Preshowers

BaBar Experiment: PEP-II Collider

PEP-II at SLAC in Kalifornia

- **Electron-Positron-Collisions:**
 - e⁻: 9.0 GeV e⁺: 3.1 Gev
 - two storage rings

... but also Tau-Factory

Boost

- center of mass energy: 10.58 GeV
 - corresponds to Y(4S) resonance

B-Factory

$$e^+e^- \rightarrow B \overline{B}$$
:
 $e^+e^- \rightarrow \tau \tau$:

 $\sigma = 1.05 nb$ $\sigma = 0.89 nb$

BaBar Experiment: Detector

BABAR Detector

3

CKM-Matrix

Standard Model: • Quark mass eigenstates not equal to weak interaction eigenstates

• CKM-Matrix describes the mixing

First row unitarity condition:

$$|V_{ud}^{2}| + |V_{us}^{2}| + |V_{ub}^{2}| = 1$$

Status: |V_{us}| from Kaon Decays

PDG2006 world average:

 $|V_{ud}| = 0.97377 \pm 0.00027 (\Rightarrow 0.028 \%)$ $|V_{us}| = 0.2257 \pm 0.0021 (\Rightarrow 0.93 \%)$

V_{us}

(π**)**

(K) ^Sd

 $|V_{ub}| = (4.31 \pm 0.30) * 10^{-3}$

Measurements of $|V_{us}|$

- use kaon decays $(e.g. K^0 \rightarrow e^+ \pi^- v_e)$
- dominated by uncertainty of the theoretical determination of kaon form factor

Goal: Systematically independent approach to $|V_{us}|$: alternative measurement in tau lepton decays

Motivation

Goal : Measurement of CKM-matrix-element |V_{us}| in tau-lepton decays with "net-strangeness"

V_{us}**| in Tau Decays**

Strange Spectral Function

- Need to determine the strange spectral function:
- Measure the invariant mass spectrum

Consistent treatment of tau-decay channels with net-strangeness necessary

Invariant Mass Spectrum

Diploma Thesis: Daniil Nekrassov

Characteristics of Tau Decays

Tau lifetime: 291 fs
Tau decays in beam pipe
Reconstruction via decay products

Tau mass: 1.78 GeV

- Tau events are jet-like
- Separation from BB events

Neutrinos

Missing Momentum

Decay Channels with Strange-Quarks in the Final State

Channels under study in Heidelberg-Babar-Group are colored :

Zerfallskanal	BF [%] PDG 06	Goal:
$\tau^- \to K^0 \pi^- \nu_\tau$	$0,90{\pm}0,04$	Measure branching fraction of
$\tau^- \to K^- \nu_{\tau}$	$0,691{\pm}0,023$	$\tau^{-} \rightarrow n K^{-} \gamma$
$\tau^- \to K^- \pi^0 \nu_{\tau}$	$0,452 \pm 0,027$	
$\tau^- \to K^- \pi^+ \pi^- \nu_\tau$	$0,390 \pm 0,040$	
$\tau^- \to \bar{K^0} \pi^- \pi^0 \nu_{\tau}$	$0,380 \pm 0,040$	n
$\tau^- \to K^- \pi^+ \pi^- \pi^0 \nu_\tau$	$0,079\pm0,012$	\overline{v}_{τ} $ \overline{u}$
$\tau^- \to K^- \pi^0 \pi^0 \nu_\tau$	$0,058 \pm 0,023$	W room y
$\tau^- \to K^- \pi^0 \pi^0 \pi^0 \nu_\tau$	$0,042 \pm 0,021$	
$\tau^- \to K^- \eta \nu_{\tau}$	$0,027 \pm 0,006$	τ V s
$\tau^- \to \bar{K^0} \pi^- \pi^0 \pi^0 \nu_\tau$	$0,026 \pm 0,024$	v us K

Identification of Tau Pairs

Selection criteria:

- jet-like events
- divide event in two hemispheres:

lepton-tag on 1-prong side: require electron or muon

> all other particles are daughters of "signal-side" tau

signal side: selection of hadrons

 strong suppression of non-tau backgrounds

 $\tau \to \eta K \nu_{\tau}$

 Kaon Identification:
 separation from pions with Cherenkov-detector

 $\eta \rightarrow \gamma \gamma$

Large combinatorial background of
decays with neutral pions :
e.g.
$$\tau^- \rightarrow \pi^0 K^- \nu_{\tau}$$
 (BF is about 15 times larger than BF of η channel) ¹⁴

 $\eta \rightarrow \gamma \gamma$

First look at signal region:

Selection of neutral pions : don't use their daughter photons for η candidates

Next steps:

- Improvement of event selection
 - Study of backgrounds
 - Expand analysis with channel $\eta \rightarrow \pi^+ \pi^- \pi^0$
 - Measure branching fracton
 - Determine invariant mass $m(K \eta)$

Summary and Outlook

- BaBar is also a Tau-Factory
- The large tau dataset offers the possibility for an alternative measurement of V_{us}
- Many tau-decay with net-strangeness channels are already under study in Heidelberg
- Study of decay channel $\tau \rightarrow \eta K \nu_{\tau}$ started

Future steps:

- Study of remaining tau decays with net-strangeness
- Consistent treatment of all tau decays in a combined measurement

Preshower Study: Motivation

Calorimeter - Insertion of last Modul

Electromagnetic Calorimeter (EMC)

CsI(TI) Crystals: 5760 in "barrel" 820 in "endcap"

Material in front of the calorimeter: about 0.4 X_{0.} mainly: DIRC (0.3 X₀) Interaction of photons with this material leads to "Preshowers"

Preshower: Photon which started to shower already in front of the EMC

Preshower Study: Motivation

- 13 % of all photons are preshowers:
 - Preshowers "lose" energy in front of the calorimeter

Questions:

- What happens to energy resolution?
- How is the (Pre)Shower shape ?
- How does MC describe Preshowers?

Diploma theses topic: Is it possible to identify preshowers ?

Idea : Try to do it with the DIRC

DIRC

Detector of Internally Reflected Cherenkov Light

- 144 quartz bars in 12 sectors
- 6 m³ water tank
- about 11000 photo multipliers

• Charged particle with velocity β emits Cherenkov-Photons in DIRC-bars with angle Θ_c :

$$\cos(\Theta_{c}) = \frac{1}{(n\beta)}$$

- Photons travel through the bars via internal reflection to the photo multiplier tubes
- Determined Θ_c is compared to particle momentum measured in tracking system

DIRC

Observable:

- •Track trajectory coordinates and angle at DIRC
- Photo Tube coordinates
- geometric reconstruction of Cherenkov angle for each photo tube hit
 - up to 16 ambiguities: multiple paths are possible
- •Time of photon detection T_{mess} relative to bunch crossing
 - can be compared with expected calculated time T_{ex}

DIRC Time Information

Time information $\Delta T = T_{mess} - T_{expected}$ used to:

- 1) suppress background (Factor 40)
- 2) resolve geometric ambiguities
 - (large ΔT more unlikely than small ΔT)

Preshower from MC photons

Single Photon Monte Carlo

→ All photo multiplier hits originate from shower-electrons

→ Θ_c distributed at expected value for relativistic electrons
 Preshower photons "emit" Cherenkov-photons !

In generic Events:

- A lot of wrong accociations need to be resolved
- Don't use DIRC-tube-hits already associated to charged particles
- Define for each geometrical possibility to associate one DIRC-hit with one EMCphoton :

$$A = \frac{(T_{erwart} - T_{mess})^2}{(8ns)^2} + \frac{(\Theta_C - 0.82)^2}{(0.05rad)^2}$$

Uses

- Time information
- Expected Cherenkov angle for electrons

Choose unique association with minimal A

Definition of Preshowers

Data samples for different studies can be defined:

- Low preshower content: Higher photon energy resolution
- High preshower content: Studies of preshower photon behavior

For high preshower content:

- A preshower photon is an EMC-cluster with:
- a DIRC-tube-hit to EMC-cluster association with A<0.2
 a number of this associations > 10

Sample contains about 60% of preshowers : Enrichment by almost a factor of 5

Preshower Identification in Real Data

Application of Preshowers

BaBar-Service-Task: Study preshower cluster shapes in the EMC **Compare data and Monte Carlo**

Lateral Moment: describes shower shape

$$LAT = \frac{\sum_{i=3}^{N} E_{i} r_{i}^{2}}{\sum_{i=3}^{N} E_{i} r_{i}^{2} + E_{1} r_{0}^{2} + E_{2} r_{0}^{2}}$$

N

 $E_1 > E_2 > \dots > E_N$

 $r_i = distance(Crystal_i, Crystal_{clusterCenter})$ $r_0 = distance \ between 2 \ crystals$

LAT

Summary and Outlook

First Look at Lateral Moment:

- shape shifted as expected
- how do real data look like?

- Showed in diploma thesis: Identification of preshowers with the Cherenkov detector is possible
- Started to use this tool to study calorimeter characteristics