Neutron-Mirror neutron Oscillation Measurement at FRM II

Composition of the Universe

 there is not sufficient visible matter to explain galaxy formation by gravitation theory

• orbital velocities of stars distant from the centre of galaxies should be smaller than observed

b gravitation of visible matter is not sufficient to keep a galaxy together

4% matter of the standard model22 % dark matter74 % dark energy

(WMAP-data)

dark: astronomically not detectable indirect detection needed

What is dark matter?

WIMPs Weakly Interacting Particles

- → elementary particles without electric charge only weakly interacting, subject to gravitation mass of ca. 10-1000 GeV/c²
- Particles of the mirror world (Lee and Yang 1956)

Mirror matter

Idea of an overall theory to conserve the symmetry of the world.

R-transformation: transformation from world to mirror world

PR-transformation: parity transformation $\vec{r} \rightarrow -\vec{r}$ and transformation from world \rightarrow mirror world

world: only left-handed v and only right-handed \overline{v} mirror world: only right-handed v' and only left-handed $\overline{v'}$

no strong, weak or electromagnetic interactions between world and mirror world

Measuring methods of mirror particles

Detection of mirror matter:

- direct: is not possible, there are no detectors for mirror matter available
- indirect: is possible, detection of disappearance of ("normal") matter

Observation of disappearance of particles from a beam when all other interactions are suppressed.

(Measuring with neutrons: magnetic field-free trajectory)

Measuring value: analysis of the oscillation time matter \rightarrow mirror matter \rightarrow matter

Measurement with neutrons

Neutrons are predestinated for a mirror world measurement because:

• they are neutral,

→ charged particles always produce an electric field that would suppress an oscillation

• they have a long lifetime,

 \rightarrow a long observation time is available

 high fluxes and efficient high rate detectors are available
→ small statistical error

Measurement

Oscillation from neutron in mirror neutron could be only possible in a magnetic field-free space:

Measuring of:

- flux of a neutron beam in an external magnetic field
- neutron flux without a magnetic field

measurement time: 500 ms per cycle time of flight: 17 ms during switch on and off of the magnetic field, there is a measuring pause of 100 ms total measurement time: ca. 26.5 hours at the FRM II in Munich

for each cycle: $\frac{n-rate \ without \ a \ magnetic \ field}{n-rate \ with \ a \ magnetic \ field}$

a large number of ratios

Experiment-Spectrometer

Spectrometer: RESEDA at FRM II

- (terrestrial) magnetic field shielding with double-walled μ -metal tube (length of spectrometer arms each 2.6 m)
- there is a coil in the $\,\,\mu$ -metal tube to switch on an external magnetic field

Residual magnetic field

Measuring of longitudinal and transversal residual magnetic field with 2 different sensors (Förster- and Barrington)

- \rightarrow transversal: is negligible
- \rightarrow longitudinal: 10 5 Restmagnetfeld $[\mu T]$ 1 0.5 0.1 0.05 0.01 2 0 3 5 4

Neutronenflugstrecke [m]

6

Residual magnetic field

the residual magnetic field with additional μ -metal tube in the sample region:

Suppression integral

2 state system : neutron: |n> mirror neutron: |n'>

Hamilton operator: $H = H_0 + \lambda \hbar \delta$

H₀: describes neutron and mirror neutron as

2 separated states without transition

 $\hbar \ \delta$: perturbation, allowing a transition from n \rightarrow n′

transition probability (measuring time << oscillation time):

Evaluation

measured neutron flux without B-field $\hat{=} 1-P_{nn'}$

measured neutron flux with B-field $\hat{=} 1$

Experiment-Detector

Detector: CASCADE-Detector

- measurement of high fluxes is possible
- high efficiency: for $\lambda = 11 \stackrel{\circ}{A} \rightarrow$ efficiency ca. 40 %

Results

suppression integral:	$\lambda = 0.927$
without additional μ -metal tube:	$\lambda = 0.35$
rate ratio:	$\frac{\overline{N_{on}}}{N_{off}} = 1.000020(27)$
Oscillation time:	$\tau_{\rm min} > 2.72s$

90% confidence level

Reactor noise

standard deviation = $\sqrt{(\text{statistical error})^2 + (\text{reactor noise})^2)^2}$

statistical error and reactor noise are not correlated

statistical error: 0.0039 reactor noise: 0.0072

standard deviation : 0.0082

Outlook

Measurement with VCNs

→ larger neutron time of flight
→ larger observation time

\int

The probability to observe a neutron-mirror neutron-oscillation increases

But an additional monitoring of the reactor noise is necessary

Thank you for your attention

Reactor noise

Reactor noise versus correlation time:

