The ALICE TRD Trigger System

Overview and Current Status

Outline

- Introduction to TRD Trigger for ALICE
- TRD Online Global Tracking
- From Tracklets to Trigger: Algorithm
- Low-latency Trigger Hardware: Track Matching Unit
- Results from Current Test Setup
- Summary and Status

Jan de Cuveland

<cuveland@kip.uni-heidelberg.de>

University of Heidelberg, Germany Kirchhoff-Institute of Physics Chair of Computer Science Prof. Dr.Volker Lindenstruth URL: www.ti.uni-hd.de

ALICE Experiment Overview

ALICE

- 1150 TeV Pb-Pb interactions
- 8000 collisions per second
- Detectors for
 - **Trigger** (diff. levels): ITS, TRD
 - High resolution tracking:TPC

• ...

Goal is to create the Quark-Gluon Plasma, a state of matter existing during the first few microseconds after the big bang

2

ALIC

Transition Radiation Detector – TRD

TRD Trigger Tasks

- Complex trigger system
- Objective:
 - Find high *p*t electron pairs
- Tasks:
 - Reconstruct tracks
 - Analyze tracks
- Trigger decision required after 6 µs
 - Primary design objective: minimize latency

TRD Trigger Timing

ALICE Trigger Hierarchy

• To account for different detector latencies, there are several levels in the ALICE trigger:

Trigger	Pre-Trigger	Level-0	Level-I	Level-2	High-Level
Time after Interaction	0.2 µs	Ι.2 μs	6.5 µs	~ 88 µs	> ms
Average Rate (Pb-Pb)	~ 5000 Hz	~ 5000 Hz	~ 400 Hz	~ 200 Hz	~ 100 Hz
Description/Use	TRD Specific Wake-Up	Strobe to Sampling Electronics	Major Rate Reduction	TPC Past- Future Protection	Software Trigger, Data Compression
TRD Contribution	generated for TRD	TRD contributes to L0 via Pre-Trigger	TRD contributes to LI via GTU		

TRD Trigger Timing

Collision

Jan de Cuveland – Uni Heidelberg, KIP – The ALICE TRD Trigger System – IRTG Meeting, Heidelberg – 2007-02-26

TRD Trigger System Overview

ALIC

8

Jan de Cuveland – Uni Heidelberg, KIP – The ALICE TRD Trigger System – IRTG Meeting, Heidelberg – 2007-02-26

Track Matching Unit (TMU): From Tracklets to Trigger

Implemented as FPGA Design using VHDL

ALIC

9

Track Re-assembly

- Search for tracklets belonging together (3-dimensional matching task)
- Projection of tracklets to virtual plane
- Sliding window algorithm
- A track is found, if ≥
 4 tracklets from
 different layers inside
 same multi dimensional window

Reconstruction of the Transverse Momentum

- Calculate linear fit of (unprojected) y positions of tracklets
- Estimate transverse momentum from line parameter a
- Uses look-up tables, additions and multiplications

Jan de Cuveland – Uni Heidelberg, KIP – The ALICE TRD Trigger System – IRTG Meeting, Heidelberg – 2007-02-26

Simulation Results

• Simulation with AliRoot data, electrons with $p_t > 3$ GeV/c

ALIC

12

1

FPGA Design Results

TMU Board – Buffering Design Structure

TMU Board – Buffering / SIU Interface

Multi-Event Buffering inside the GTU

• Multi-Event buffering significantly reduces detector dead time:

(Results from Monte-Carlo Simulation of Trigger Timing)

GTU Architecture

ALIC

17

Track Matching Unit (TMU) Board

SMU Concentrator Board

Combined TMU/SMU Board

- Alternative assembly for stand-alone operation without LVDS backplane
- Used for testing with the first TRD super-module
- Modifications needed for ethernet socket, SIU mounting
- Not used in the final ALICE TRD setup

Current Intermediate GTU Setup

• 5 combined TMU/SMU boards

Latest Test Results

Current Test Setup

- Continuous parallel read-out of full TRD super-module via 60 links
- Successful transmission of detector raw data via DDL to DAQ PC
- Event shaper VHDL design still has timing problems (complex design running at 200 MHz) – sometimes, wrong data is transmitted
- Critical hardware components (FPGA, SFPs, MGTs, SRAM, PCI, SIU Interface, TTCrx interface on DCS board) successfully tested
- LVDS bus not yet tested
- Optical link diagnostic features via PowerPC supported detector integration
- No TMU/SMU hardware problems encountered

Status and Outlook

Prototype Test Setup, March 2006

Test Setup, October 2006

• TMU/SMU Hardware

• PCB version with minor changes is in production, I 30 PCBs to be delivered

• FPGA Design

- Reconstruction and trigger algorithm implemented (in VHDL) and verified
- Data-shipping design implemented, but needs further tuning to meet timing requirements
- Control components are currently being implemented (TTC interfacing, backplane LVDS communication, ...)
- Next steps
 - Further testing and optimization of VHDL design, implement remaining components
 - Build final setup of 90 TMUs + 18 SMUs

Thank You for Your Attention

E-Mail: cuveland@kip.uni-heidelberg.de

Jan de Cuveland – Uni Heidelberg, KIP – The ALICE TRD Trigger System – IRTG Meeting, Heidelberg – 2007-02-26