Development and application of the Kalman filter method in the CBM and ALICE experiments

> Sergey Gorbunov GSI / KIP

> > Heidelberg October 19, 2007

Outline

- Fit problem in event reconstruction in HEP
- The Kalman Filter method
- Kalman Filter for on-line event reconstruction in CBM
 - KF track fit in CBM
 - CA+KF tracker in CBM
 - Fast SIMDized Kalman Filter
- Kalman Filter for on-line event reconstruction in ALICE HLT
 - CA tracker for ALICE HLT
 - KF fit with 3D track model
- Reconstruction of vertices and decayed particles
- Summary

Fit problem in event reconstruction

- Track finding
- Track fitting

Track merging

Reconstruction of vertices and decayed particles

Sergey Gorbunov, GSI/KIP

The Kalman filter method

The Kalman filter is the most used method for the fit problem. The method is well known in HEP, but in modern experiments the large amount of data and specific problems require development of new Kalman filter-based algorithms as well as investigations of the basic method.

Heidelberg, 19.10.2007

KF fit in the CBM experiment

CA+KF tracker for CBM

Efficiency, %	Track category	Efficiency, %
95.29	Reference set	99.45
90.52	All set	96.98
76.05	Extra set	89.46
0.00	Clone	0.01
2.18	Ghost	0.61

Heidelberg, 19.10.2007

Sergey Gorbunov, GSI/KIP

Speed up of the Kalman filter

Problem: Pixel geometry (1 sec) => double-sided strips (3 min)

Reco time = N combinations*fit time => speed up of KF fit utilities needed

Stage	Description	Time/track	Speedup	-10-
0	Initial scalar version	12 ms	-	-10.5
1	Approximation of the magnetic field	240 µs	50	
2	Optimization of the algorithm	7.2 µs	35	⁵ ⁰ ⁻⁵ -10 ⁻⁵ ⁻¹⁰ ⁻⁵ ⁰ ⁵ ¹⁰ ¹⁵ ²⁰ ⁻⁵ ⁻¹⁰ ⁻⁵ ⁰ ⁵ ¹⁰ ¹⁵ ²⁰
3	SIMDization	1.6 µs	4.5	
4	Porting to SPE	1.1 µs	1.5	Dual Cell Blade
5	Parallelization on 16 SPE's	0.1 µs	10	Böblingen, Germany
	Final SIMDized version on Cell	0.1 µs	120000	
6	FPGA	? ns	?	Future, but realistic

KF fit on different architectures

Fit of a single track:

Ixa1411	Processing Units	Cache/LS, kB	Clock, GHz	Time, μs	kCycle/Track	
	2 Intel Xeon with HT	512	2.66	1.47	3.91	
eh102	2 Dual Core AMD Opteron	1024	1.8	1.86	3.35	
	2 Cell Broadband Engine	256	2.4	0.87	2.09	
blade11bc4			•		•	

S.Gorbunov, U.Kebschull, I.Kisel, V.Lindenstruth, W.F.J.Müller, Fast SIMDized Kalman filter based track fit, acc. by CPC

Speed up of CA+KF tracker

CA+KF tracker for ALICE HLT

Heidelberg, 19.10.2007

Sergey Gorbunov, GSI/KIP

CA+KF algorithm (sector view)

Reconstruction of vertices and decayed particles

KFParticle: particle parameters

 $\mathbf{r}_{[8]} = (x y z, p_x p_y p_z, E, S(=L/p))$

with full covariance matrix $C_{[8\times8]}$

- Physical track model for mother [D⁰] and daughters [π⁺, K⁻]
- State vector contains all the particle parameters both at decay and production vertices
- Algorithm is suitable for vertex fit (including primary vertex fit)
- User friendly interface: class CbmKFParticle / AliKFParticle ;

10^6 events	Production Vertex [µm]			Decay Vertex [µm]			Physical Parameters			
	Х	У	Z	Х	У	Z	P [%]	M [MeV/c]	L [μm]	cT [μm]
Accuracy	0.81	0.73	5.50	2.64	2.64	63.88	0.79	11.34	64.10	9.81
Pull	1.14	1.10	1.11	1.13	1.13	1.10	1.20	1.19	1.11	1.11

AliKFParticle performance for D⁰ fit in ALICE

106 events	Production Vertex [µm]			Decay Vertex [µm]			Physical Parameters			
10° events	x	У	Z	Х	у	Z	P [%]	M [MeV/c]	L [μm]	cT [μm]
Accuracy	49.07	48.79	67.42	75.41	75.03	88.6	0.75	9.9	165.5	100.4
Pull	0.95	0.95	0.98	0.92	0.92	0.97	0.92	0.94	0.93	0.93

CbmKFParticle = AliKFParticle => same code!

Summary

• Developed and implemented:

 The Kalman filter utilities for CBM reconstruction 	[$\sigma P = 1.2\%$]
\checkmark Fast SIMDized Kalman filter for CBM on-line reconstruction	[1.6 µs / 0.1 µs]
✓ CA+KF tracker for CBM	[Eff = 97%, 78 ms / 5 ms]
✓ CA+KF tracker for ALICE HLT	[Eff = 99%, 100 ms]
✓ Reconstruction of decayed particles for CBM and ALICE	[σcT= 9.8 μm/100 μm, 50 μs]

• Related publications :

- S.Gorbunov, I.Kisel, Analytic formula for track extrapolation in non-homogeneous magnetic field, NIM A 559, (2006)
- S.Gorbunov, U.Kebschull, I.Kisel, V.Lindenstruth, W.F.J.Müller, Fast SIMDized Kalman filter based track fit, CPC, (2007)
- S.Gorbunov, I.Kisel, Primary vertex fit based on the Kalman filter, CBM-SOFT-note-2006-001, (2006)
- S.Gorbunov, I.Kisel, Secondary vertex fit based on the Kalman filter, CBM-SOFT-note-2006-002, (2006)
- S.Gorbunov, I.Kisel, Reconstruction of decayed particles based on the Kalman filter, CBM-SOFT-note-2007-003, (2007)
- S.Gorbunov, I.Kisel, I.Vassiliev, Analysis of D0 detection in Au+Au collisions at 25 AGeV, CBM-PHYS-note-2005-001, (2005)
- S.Gorbunov, I.Kisel, Elastic net for stand-alone RICH ring finding, NIM A 559, (2006)

• Future plans (ALICE HLT):

- > Track fit investigation
- > Speed up and SIMDization
- > Run the reconstruction core on the Cell processor and GPU
- > Test on heavy ion events

