How does one know that neutrinos have mass?

Aleksandra Adametz

History

In 1930:

Continuous spectrum of electrons from nuclear decays could not be explained

New neutral particle postulated

In 1956:

First observation of neutrinos

Anti-electron-neutrinos detected in reaction

$$\overline{v}_e p \rightarrow e^+ n$$

Fig. 5. Energy distribution curve of the beta-rays.

V relection volts)

Standard Model

 neutrinos are always left-handed right-handed neutrinos never observed

neutrinos are massless

• 3 types of neutrinos $\text{measurment of } Z^{\text{o}}\text{-decays at LEP}$ $\Gamma_{Z} = \Gamma_{hadr} + \Gamma_{I\bar{I}} + N_{v} \cdot \Gamma_{v\bar{v}}$

Neutrino Sources

- Sun
- Air showers (cosmic rays)

"geoneutrinos" (e.g. decay of 238U within the Earth)

- cosmic neutrino background
- Supernovae
- Accelerators
- Reactors

Direct Mass Measurements

tritium ß-decay and the neutrino rest mass $^3\text{H} \rightarrow ^3\text{He} + \text{e}^- + \overline{\text{v}}_{\text{e}}$ half life: $t_{1/2} = 12.32 a$ β end point energy : $E_0 = 18.57 \text{ keV}$ superallowed entire spectrum region close to ß end point 1.0 relative decay amplitude /0.8 9.0 ate [a.u.] 0.8 $m(v_{\Theta}) = 0 \text{ eV}$ 0.6 only 2 × 10⁻¹³ of all decays in last 1 eV 0.2 $m(v_{\theta}) = 1 \text{ eV}$ 0.2 0 0 14 10 E - E₀ [eV] electron energy E [keV]

Neutrino Mass Experiment:

- Mainz
- Troitsk
- KATRIN (future)

Upper limits on neutrino mass : ~ 2 eV

Atmospheric Neutrinos

Production process:

Proton collisions with nuclei

- -> air showers
- -> many charged Kaons ad Pions

$$K,\pi \rightarrow \mu + v_{\mu}$$

$$e + v_{e} + v_{\mu}$$

SuperKamiokande

1998 First evidence for neutrino mass

Detector:

- 50k m³ H2O
- ~13k PMTs (50 cm Ø)
- 1000 m underground

Principle:

- Reactions: $v n \rightarrow p l^ \bar{v} p \rightarrow n l^+$ (|=e,\mu)
- Lepton emits Cherenkov-light in water
- Cherenkov-light detected in PMTs
- For multi-GeV events:
 neutrino direction ≈ lepton direction

SuperKamiokande: Event Reconstruction

Ring-shape allows discrimination between e-like and μ -like events

Determination of
$$R = \left(\frac{\mu - like}{e - like}\right)_{Data} / \left(\frac{\mu - like}{e - like}\right)_{MC}$$

$$\frac{\mu - like}{e - like} = \frac{v_{\mu} + \bar{v}_{\mu}}{v_{e} + \bar{v}_{e}}$$

Prediction: R = 1

Measured : R = 0.6

missing v_u or to many v_e ?

SuperKamiokande: Zenith-angle dependence

Explanation for deficit:

Oscillation

Neutrino has mass!

From reactor neutrino experiments: Limits on $v_{ij} - v_{ij}$

Conclusion: Oscillation is $v_u - v_T$

Oscillation Formalism

• Flavor eigenstates expressed as superpositions of mass eigenstates:

$$|v_l>=\sum_i U_{ii}|v_i>$$
 $l=e,\mu,\tau;$ $i=1,2,3$

 States v_i propagate in dependence of distance L (assumed E>>m_i):

$$|v(L)\rangle \sim |v_i(L=0)\rangle \exp\left(-i\frac{m_i^2L}{2E}\right)$$

• Oscillation Probability (assumed that only two flavors exist):

Three neutrino types mixing matrix

$$(c_{ij} = cos\Theta_{ij}, s_{ij} = sin\Theta_{ij})$$

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

By observing oscillations (measuring oscillation probabilities) one can determine:

- 3 mixing angles: Θ_{12} , Θ_{23} , Θ_{13}
- 2 mass squared differences Δm_{21} , Δm_{31}
- CP violating phase
- U corresponds to CKM-matrix but :

Results from atmospheric neutrinos

SuperKamiokande:

$$1.9 \times 10^{-3} \text{ eV}^2 < \Delta m_{\text{atm}}^2 < 3.0 \times 10^{-3} \text{ eV}^2$$

$$\sin^2 2\Theta_{\text{atm}} > 0.90$$

$$(36^\circ < \Theta_{\text{atm}} < 53^\circ)$$

Other experiments: consistent results

- No information about sign of Δm^2_{atm}
- Lower bound on heaviest neutrino mass m_h from $m_h \ge \int \Delta m_{atm}^2$:

$$m_h > 0.04 \text{ eV}$$

Accelerator Neutrinos: K2K experiment

long baseline experiment

Muon-Neutrino beam (E~1GeV):

- 12 GeV proton beam on target
 - -> Kaon and pions
 - -> $K_{,\pi}$ decay to $\mu + v_{\mu}$
- -> muons stopped

Detection of neutrino events:

- in "Near Detector"
- in "SuperKamiokande"

 L/E_v such that Δm_{atm} observable

Result:

158 events expected without oscillation 122 events found

determined Δm_{atm} consistent with other measurement

Solar Neutrinos

Production Mechanism:

Several reactions e.g.

pp:
$$p+p->D+e^++v_e$$
 $E_v < 0.42 MeV$

Be7: Be7 +e- -> Li7+
$$v_e$$
 E_v = 0.86 MeV

$$B^8: B^8 - Be^8 + e^+ + v_e = E_v < 14.6 \text{ MeV}$$

only electron-neutrinos

SSM (Standard Solar Model) Neutrino Flux Prediction

Several experiments sensitive to a different energy range measure deficit in electron-neutrino flux:

- -> neutrino oscillations?
- -> SSM wrong ?

SNO Experiment

(Sudbury Neutrino Observatory, Kanada)

- ~2000m under ground (~6000 m.w.e)
- 12m diameter acrylic vessel
- 1000t of heavy water
- 2t of salt
 (Chlorine as neutron absorber)
- 7000 t water
- 9600 PMTs

SNO Measurement

Charged Current:

$$v_e + D -> p + p + e^-$$

Neutral Current:

$$v_x + D \rightarrow p + n + v_x$$

Electron Scattering:

Comparison of the fluxes gives

- evidence for $v_e v_u, v_{\tau}$ oscillation
- consistence with SSM
- consistence with other experiments

Results From Solar Neutrinos

$$\Delta m_{sol}^2 = 8.0^{+0.4}_{-0.3} \times 10^{-5} \text{ eV}^2$$

$$\Theta_{sol} = 33.9 + /-1.6$$
 °

- Better determined than $\Delta m^2_{\ _{atm}}$
- Due to predicted matter-effects in sun:

 \longrightarrow sign of Δm^2_{sol} is known

Three neutrino squared-mass spectrum

Many other neutrino-experiments to answer open questions

- What is the real Δm hierarchy?
- What are the absolute masses?
- Are there more neutrino types?
 (sterile neutrinos)
- Are neutrinos and anti-neutrinos identical?
 (Dirac or Majorana)
- Is there CP-violation? (determination of small mixing angle Θ_{13})

