Search for new physics in multi-body final states at high invariant masses

Michael Henke Kirchhoff-Institute for Physics University of Heidelberg 05/11/10

IRTG Fall School

- Motivation
- Data sample
- Search strategy
- Definitions
- Distributions
- Uncertainties
- Limit on cross section
- Summary & Outlook

Heidelberg Graduate School of Fundamental Physics

Motivation

- Standard Model leaves open questions
 - e.g. Hierarchy of interaction scales

$$M_{EW} \sim 10^2 \,\text{GeV} \Leftrightarrow M_{PI} = \sqrt{\frac{\hbar \,\text{C}}{G_N}} \sim 10^{19} \,\text{GeV}$$

- New Physics could answer these questions
 - e.g. low scale gravity, weakly coupled string theory, SUSY
 - Likely to appear in high mass, high p_{T} states

Signature

- basic inclusive properties
 - high multiplicity
 - high p_{T} objects
 - high mass

Data and Search Strategy

- 0.295 pb⁻¹
- background processes:
 - QCD jet production
 - Alpgen
 - Pythia
 - Herwig/Herwig++
 - (ttbar)
 - (W+jet)
 - (Z+jet)

- search strategy for first data
 - event selection
 - normalization of background MC to data in control region
 - count events in signal region

Definitions

- objects
 - jets, electrons, photons, muons
- Σp_T : p_T sum of all objects
- M_{inv} : invariant mass calculated from all objects (plus E_{T}^{miss})
- control and signal region
 - control region:
 - Σp_T > 300 GeV &&
 300 GeV < M_{inv} < 800 GeV
 - signal region:
 - Σp_T > 700 GeV &&
 M_{inv} > 800 GeV

Selection

- before object selection:
 - L1_J15 trigger
 - vertex requirement
- object selection
- after object selection:
 - N>2 objects

Object Multiplicity

Σp_{T} Distribution

Object p_T & E_T^{miss}

Invariant Mass

Quantity	Uncertainty
background (QCD)	26%
PDF (choice)	12%
PDF (error set)	+6.8% -5.7%
JES	11%
control region	10%
other background	+0.6%
JER	0.6%
JES (MET)	0.5%
including e,y,µ	0.2%

• difference between Pythia and Alpgen

total systematic uncertainty: 33%

PDF Uncertainty

Quantity	Uncertainty
background (QCD)	26%
PDF (choice)	12%
PDF (error set)	+6.8% -5.7%
JES	11%
control region	10%
other background	+0.6%
JER	0.6%
JES (MET)	0.5%
including e,y,µ	0.2%

- difference between Pythia and Alpgen
- CTEQ6L1, MRST2007, CTEQ6.6

total systematic uncertainty: 33%

JES Uncertainty

Quantity	Uncertainty
background (QCD)	26%
PDF (choice)	12%
PDF (error set)	+6.8% -5.7%
JES	11%
control region	10%
other background	+0.6%
JER	0.6%
JES (MET)	0.5%
including e,γ,μ	0.2%

- difference between Pythia and Alpgen
- CTEQ6L1, MRST2007, CTEQ6.6
- jet energy scale

total systematic uncertainty: 33%

Quantity	Uncertainty
background (QCD)	26%
PDF (choice)	12%
PDF (error set)	+6.8% -5.7%
JES	11%
control region	10%
other background	+0.6%
JER	0.6%
JES (MET)	0.5%
including e,y,µ	0.2%

- difference between Pythia and Alpgen
- CTEQ6L1, MRST2007, CTEQ6.6
- jet energy scale
- choice of control region

total systematic uncertainty: 33%

Quantity	Uncertainty
background (QCD)	26%
PDF (choice)	12%
PDF (error set)	+6.8% -5.7%
JES	11%
control region	10%
other background	+0.6%
JER	0.6%
JES (MET)	0.5%
including e,γ,μ	0.2%

- difference between Pythia and Alpgen
- CTEQ6L1, MRST2007, CTEQ6.6
- jet energy scale
- choice of control region
- ttbar, W+jet, Z+jet
- jet energy resolution
- electron, photon, muon efficiency total systematic uncertainty: 33%

Invariant Mass

Results

- 0.295 pb⁻¹ (±11%) integrated luminosity
- 193 events in signal region
- 254 ±18 ±84 events predicted from background MC
- upper limit on cross section x acceptance
 - 0.34 nb (95% C.L.)
- no well established signal physics model
 - use black hole event generator for illustrative limit
 - acceptance 58±2% (no systematics)
 - limit on cross section 0.6 nb
 - black disc cross section up to O(100) nb

Outlook

- no significant limit improvement with more data
- change of strategy
 - background estimation
 - more signal dependent signatures
 - electroweak object requirement
 - higher multiplicity
 - higher masses

Conclusion

- first search for multi object final states at high invariant masses
- inclusive search strategy
- detailed study of uncertainties
- 0.34 nb(95% C.L.) limit on cross section × acceptance
- important for low scale gravity and weakly coupled string theory
- ATLAS CONF note published (ATLAS-CONF-2010-088)
 - paper in work
- more signal dependent searches with more data