

Gain Calibration of the ALICE TRD using the Decay of ⁸³ Kr by Internal Conversion **Johannes Stiller IRTG** Application Seminar Friday, December 9th, 2011

Outline

- 1. Motivation
- 2. The ALICE Experiment
 - The ALICE Transition Radiation Detector
- 1. The ^{8m} Kr-Decay for Calibration
- 2. Experimental Setup & Data Taking
- 3. Analysis
 - The Kr Cluster Finder
 - Fitting the Data
 - Gain Factor Analysis
 - Energy Resolution Measurement
 - Correlations between Gain and High Voltage
- 1. Summary & Outlook

Motivation

- ALICE studies strongly interacting matter at extreme energy densities in high-energy nuclear collisions
- ALICE Transition Radiation Detector (TRD) provides:
 - Track reconstruction of charged particles
 - e⁻/e⁺ identification
 - Fast trigger (7 μs)
 - ${\rightarrow}2\,\mu s$ drift + online tracking and particle identification
- $_{\rm O}~$ Particle identification demands gain uniformity of
 - $\Delta_{\rm Gin}$ <1 % (10 % rel. change in Pion suppression)
- $_{\odot}$ Information on mean energy loss of a particle is essential
 - Gain fluctuations with...
 - ... Chamber geometry
 - ... Pad-by-pad variations

The ALICE TRD

TRD supermodule

At present:

TRD stack

- 7 super modules installed before 2010 Ο
- 3 new super modules installed in Ο December 2010

Near Future:

- Installation of 3 more supermodules Ο
- Remaining 5 after end-of-run Ο (end of 2012)

- 18 super modules Ο
- \bigcirc 522 TRD chambers
- 5 stacks along z-axis Ο
- 6 layers covering 2.9 < r < 3.7 m Ο
- $-0.9 < \eta < 0.9$ (7 m long) Ο
- 1.15 million readout pads Ο

Radiator
Rohacell foam + glass fiber

- Multi-wire proportional chamber + drift region
 - Operated at 1530 V
 - Gas gain of ~3250
 - Xe-CO₂ [85-15]

Johannes Stiller, Universität Heidelberg

Experimental Setup & Data Taking

The Kr Cluster Finder

- Tune analysis to Kr decay properties
 - Advanced cluster finder applied after tracking reconstruction
- e⁻ stopped in Xe-CO₂ within
 <1 cm (≈1-2 pads)
- Search within 20 time bins (2µs)
- Assign found clusters to single pad (with max. energy)

ALICE

Fit Algorithm

- Feed gain factors into database and redo analysis
- "Correction gain factors" converge against optimal value
 - Distribution is significantly narrower
 - Analysis improves gradually until within systematic error (2 %)

- Geometrical distortions (i.e. outward bending because of overpressure) on pad-by-pad resolution clearly visible
- Various shapes observed, mostly dependent on chamber type (size & position)

Gain Factor Map Comparison

Ο

Compare to TRD chamber

testing during construction

Measure anode current

Mostly good agreement with

source

Scan 10x10 mesh with radioactive

Kr Calibration: Chamber 15-0-3

Electronics designed for linear signal processing

- Gauss Fit to three decay peaks in the chamber spectra
- Linear Fit confirms linearity within six per mill

Energy Resolution Measurement

- Gaussian fit on main decay peak \rightarrow Relative energy resolution:
 - ΔE_{res} = Sigma_{Gauss}/Mean_{Gauss}
- $\circ \Delta E_{res}$ dependent on pad position within chamber
- Compares well to TRD design energy resolution of ΔE_{m} < 10%

Gain vs. High Voltage

- Study on correlation between high voltage and gain to compensate gain variations
 - 1) Fit exponential to the three data points at $HV_{rom} = 1530 V$, $HV_1 = 1490 V \& HV_2 = 1450 V$
 - 2) Find mean slope for all chambers and calculate three data points
- Allows online HV adjustment of gain variations due to pressure changes for individual chambers

Summary

- o Gain calibration with 8^m Kr-decay as important tool for particle identification
- Effective fitting procedure developed

 \rightarrow Uses complete information of spectra!

- Results compare very well to TRD construction testing procedure
- Kr calibration as useful tool to study TRD performance
 - Identifies problematic channels!
- Newly acquired gain factors used:
 - Offline: Data analysis
 - Online: Download to TRD Front-End Electronics
- Iterative process to optimal values

Outlook

• Next Time: Use source with higher activity

O Repeat Analysis after new supermodules are installed

Outlook – As PhD student at IRTG...

Road map (very preliminary):

Join ITS Upgrade Working Group

• Monte Carlo Studies (?)...

O*+ Production in p+Pb collisions

BACKUP Slides

ALICE TRD as Barometer

- TRD is a closed gas system
- Atmospheric pressure fluctuates
- Gas density fluctuates dG/G = -6.03 dp/p
- Predict: dG/G = 4.2 %

